Lecture notes on Molecular Biology

how molecular biology supports evolution. molecular biology and genetics lecture notes. how does molecular biology provide evidence for evolution pdf free download
ZackVincent Profile Pic
ZackVincent,United Kingdom,Teacher
Published Date:15-07-2017
Your Website URL(Optional)
Comment
MOLECULAR BIOLOGY AND APPLIED GENETICS FOR Medical Laboratory Technology Students Upgraded Lecture Note Series Mohammed Awole Adem Jimma University MOLECULAR BIOLOGY AND APPLIED GENETICS For Medical Laboratory Technician Students Lecture Note Series Mohammed Awole Adem Upgraded - 2006 In collaboration with The Carter Center (EPHTI) and The Federal Democratic Republic of Ethiopia Ministry of Education and Ministry of Health Jimma University PREFACE The problem faced today in the learning and teaching of Applied Genetics and Molecular Biology for laboratory technologists in universities, colleges andhealth institutions primarily from the unavailability of textbooks that focus on the needs of Ethiopian students. This lecture note has been prepared with the primary aim of alleviating the problems encountered in the teaching of Medical Applied Genetics and Molecular Biology course and in minimizing discrepancies prevailing among the different teaching and training health institutions. It can also be used in teaching any introductory course on medical Applied Genetics and Molecular Biology and as a reference material. This lecture note is specifically designed for medical laboratory technologists, and includes only those areas of molecular cell biology and Applied Genetics relevant to degree-level understanding of modern laboratory technology. Since genetics is prerequisite course to molecular biology, the lecture note starts with Genetics i followed by Molecular Biology. It provides students with molecular background to enable them to understand and critically analyze recent advances in laboratory sciences. Finally, it contains a glossary, which summarizes important terminologies used in the text. Each chapter begins by specific learning objectives and at the end of each chapter review questions are also included. We welcoming the reviewers and users input regarding this edition so that future editions will be better. ii ACKNOWLEDGEMENTS I would like to acknowledge The Carter Center for its initiative, financial, material and logistic supports for the preparation of this teaching material. We are indebted to The Jimma University that support directly or indirectly for the visibility of this lecture note preparation. I extend our appreciation to the reviewers of the manuscript during intra-workshop, Namely, Ato Tsehayneh Kelemu , Biochemistry Department, School of Medicine, and Ato Yared Alemu, School of Medical Laboratory Technology, Jimma University.We greatly appreciate them for their attitude, concern and dedication. I also acknowledge all reviewers of the manuscript during inter-institutional workshop and those who participated as national reviewers. Last but not least I would like to acknowledge tyhose who helped me directly or indirectly. iii TABLE OF CONTENTS Preface............................................................................ i Acknowledgement.............................................................. iii Table of Contents............................................................... iv List of Figures ................................................................... xi General objectives............................................................. xiv CHAPTER ONE: THE CELL 1.0. Eukaryotic and Prokaryotic Cell .......................... 1 1.1. Function of the cell .............................................. 5 1.2. The chemical components of Cell membranes... 8 1.3. Membrane structure............................................. 10 CHAPTER TWO: THE CELL CYCLE 2.0. Introduction .......................................................... 13 2.1. Control of the Cell Cycle...................................... 15 2.2. Steps in the cycle................................................. 16 2.3. Meiosis and the Cell Cycle................................... 18 2.4. Quality Control of the Cell Cycle .......................... 18 2.5. Regulation of the Cell Cycle................................. 19 iv 2.6. Mitosis.................................................................. 23 2.7. Meiosis................................................................. 30 2.8. Comparison of Meiosis and Mitosis..................... 33 2.9. Meiotic errors ....................................................... 33 2.10. Mitosis, Meiosis, and Ploidy............................... 34 2.11. Meiosis and Genetic Recombination.................. 35 2.12. Meiosis and Sexual Reproduction...................... 38 CHAPTER THREE: MACROMOLECULES 3.0. Introduction .......................................................... 40 3.1. Carbohydrate....................................................... 41 3.2. Nucleic acids ....................................................... 43 3.3. Protein ................................................................. 46 3.4. Helix..................................................................... 49 3.5. Tertiary structure.................................................. 58 3.6. Macromolecular Interactions................................ 63 3.7. Denaturation........................................................ 64 3.8. Renaturation........................................................ 69 CHAPTER FOUR: GENETICS 4.1. Mendelian genetics.............................................. 73 4.2. Mendel's first law: principle of segregation.......... 79 4.3. Mendel's second law: principle of independent assortment.. 80 4.4. Mendel's third law: principle of Dominance.......... 81 v 4.5. Exception to Mendelian Genetics ........................ 82 CHAPTER FIVE: CHROMOSOME STRUCTURE AND FUNCTION 5.1. Chromosome Morphology.................................... 96 5.2. Normal Chromosome........................................... 97 5.3. Chromosome Abnormalities................................. 100 5.4. Types of Chromatin ............................................. 105 5.5. Codominant alleles.............................................. 106 5.6. Incomplete dominance......................................... 107 5.7. Multiple alleles..................................................... 108 5.8. Epistasis............................................................... 108 5.9. Environment and Gene Expression .................... 109 5.10. Polygenic Inheritance ........................................ 110 5.11. Pleiotropy .......................................................... 112 5.12. Human Chromosome Abnormalities ................. 113 5.13. Cytogenetics ...................................................... 119 CHAPTER SIX: LINKAGE 6.0. Introduction .......................................................... 125 6.1. Mapping ............................................................... 128 6.2. Double Crossovers .............................................. 132 6.3. Interference.......................................................... 132 6.4. Deriving Linkage Distance and Gene Order from Three-Point Crosses ........................................... 134 vi CHAPTER SEVEN: PEDIGREE ANALYSIS 7.1. Symbols Used to Draw Pedigrees ....................... 145 7.2. Modes of inheritance............................................ 147 7.3. Autosomal dominant ............................................ 150 7.4. Autosomal recessive............................................ 151 7.5. Mitochondrial inheritance ..................................... 157 7.6. Uniparental disomy .............................................. 158 CHAPTER EIGHT: NUCLEIC ACID STRUCTURE AND FUNCTION 8.0. Introduction .......................................................... 161 8.1. Deoxyribonucleic acid .......................................... 162 8.2. Ribonucleic acid................................................... 167 8.3. Chemical differences between DNA & RNA ........ 170 8.4. DNA Replication................................................... 173 8.5. Control of Replication........................................... 191 8.6. DNA Ligation........................................................ 193 CHAPTER NINE:DNA DAMAGE AND REPAIR 9.0. Introduction .......................................................... 200 9.1. Agents that Damage DNA ................................... 201 9.2. Types of DNA damage......................................... 202 9.3. Repairing Damaged Bases .................................. 203 9.4. Repairing Strand Breaks...................................... 209 vii 9.5. Mutation............................................................... 210 9.6. Insertions and Deletions...................................... 214 9. 7. Duplications........................................................ 216 9.8. Translocations...................................................... 219 9.9. Frequency of Mutations ...................................... 220 9.10.Measuring Mutation Rate.................................... 223 CHAPTER TEN: GENE TRANSFER IN BACTERIA 10.0. Introduction........................................................ 226 10.1. Conjugation........................................................ 227 10.2. Transduction...................................................... 232 10.3. Transformation................................................... 238 10.4. Transposition..................................................... 241 10.5. Recombination................................................... 242 10.6. Plasmid.............................................................. 243 CHAPTER ELEVEN: TRANSCRIPTION AND TRANSLATION 11.0. Introduction ....................................................... 247 11.1. Transcription...................................................... 249 11.2. Translation......................................................... 252 11.3. Triplet Code ....................................................... 254 11.4. Transfer RNA..................................................... 258 11.5. Function of Ribosome ....................................... 261 11.5. The Central Dogma............................................ 261 viii 11.7. Protein Synthesis............................................... 264 CHAPTER TWELVE: CONTROL OF GENE EXPRESSION 12.0. Introduction........................................................ 268 12.1. Gene Control in Prokaryotes.............................. 272 12.2. The lac Operon.................................................. 275 12.2. The trp Operon................................................... 281 12.3. Gene Control in Eukaryotes............................... 285 12.4. Control of Eukaryotic Transcription Initiation...... 291 12.5. Transcription and Processing of mRNA ............ 296 CHAPTER THIRTEEN: RECOMBINANT DNA TECHNOLOGY 13.0. Introduction........................................................ 303 13.1. Uses of Genetic Engineering ............................. 304 13.2. Basic Tools of Genetic Engineering................... 305 13.3. Enzymes in Molecular Biology ........................... 306 13.4. DNA manipulation.............................................. 314 13.5. Making a Recombinant DNA: An Overview ....... 317 13.6. Cloning............................................................... 318 13.7. Cloning DNA ...................................................... 333 13.8. Cloning into a Plasmid ...................................... 339 13.9. Expression and Engineering of Macromolecules 343 13.10. Creating mutations........................................... 347 ix CHAPTER FOURTEEN: DNA SEQUENCING 14.0. Introduction........................................................ 355 14.1. Sanger Method for DNA Sequencing................. 361 14.2. An Automated sequencing gel ........................... 371 14.3. Shotgun Sequencing.......................................... 376 CHAPTER FIFTEEN: MOLECULAR TECHNIQUES 15. 1. Electrophoresis ................................................. 380 15.2. Complementarity and Hybridization ................... 386 15.3. Blots................................................................... 389 15.4. Polymerase Chain Reaction.............................. 404 15.5. RFLP.................................................................. 423 15.6. DNA Finger printing ........................................... 431 Glossary ............................................................................. 439 x List of Figures Fig.1. Prokaryotic Cell................................................................. 2 Fig. 2: Eukaryotic Cell................................................................. 2 Fig. 3. The cell cycle ................................................................... 14 Fig. 4: Overview of Major events in Mitosis ................................ 23 Fig 5: Prophase........................................................................... 26 Fig. 6: Prometaphase.................................................................. 27 Fig. 7: Metaphase ...................................................................... 27 Fig 8: Early anaphase................................................................. 28 Fig. 9: Telophase ........................................................................ 29 Fig. 10: Overview of steps in meiosis ......................................... 32 Fig 11: Cross pollination and self pollination and their respective generation................................................................... 76 Fig. 12: Self pollination of f2 generation...................................... 77 Fig.13. Genetic composition of parent generation with their f1and f2 Generation ................................................................ 78 xi Fig.14. Segregation of alleles in the production of sex cells....... 79 Fig. 15. A typical pedigree .......................................................... 151 Fig.1 6. a) A 'typical' autosomal recessive pedigree, and b) an autosomal pedigree with inbreeding.................. 152 Fig.17. Maternal and paternal alleles and their breeding............ 154 Fig. 18. Comparison of Ribose and Deoxyribose sugars............ 164 Fig.19. DNA Replication ............................................................. 174 Fig.21. Effects of mutation ......................................................... 212 Fig.22. Frame shift ..................................................................... 214 Fig.23 Genome Duplication ........................................................ 217 Fig 24 Gene Transfer during conjugation ................................... 331 Fig. 25 Transcription and translation........................................... 247 Fig.26. Transcription ................................................................... 250 Fig.27. Steps in breaking the genetic code: the deciphering of a poly-U mRNA .............................................................. 254 Fig.28. The genetic code ............................................................ 256 Fig.29. Transfer RNA.................................................................. 259 xii Fig.30.The central dogma. ......................................................... 263 Fig. 31.A polysome ..................................................................... 266 Fig. 32.Regulation of the lac operon in E. coli ............................ 279 Fig.33 Typical structure of a eukaryotic mRNA gene.................. 294 Fig.34. Transforming E.coli......................................................... 322 Fig.35. Dideoxy method of sequencing....................................... 363 Fig.36. The structure of a dideoxynucleotide.............................. 368 xiii INTRODUCTION Molecular genetics, or molecular biology, is the study of the biochemical mechanisms of inheritance. It is the study of the biochemical nature of the genetic material and its control of phenotype. It is the study of the connection between genotype and phenotype. The connection is a chemical one. Control of phenotype is one of the two roles of DNA (transcription). You have already been exposed to the concept of the Central Dogma of Molecular Biology, i.e. that the connection between genotype and phenotype is DNA (genotype) to RNA to enzyme to cell chemistry to phenotype. James Watson and Francis Crick received the 1953 Nobel Prize for their discovery of the structure of the DNA molecule. This is the second most important discovery in the history of biology, ranking just behind that of Charles Darwin. This discovery marked the beginning of an intense study of molecular biology, one that dominates modern biology and that will continue to do so into the foreseeable future. . xiv The essential characteristic of Molecular Genetics is that gene products are studied through the genes that encode them. This contrasts with a biochemical approach, in which the gene products themselves are purified and their activities studied in vitro. Genetics tells that a gene product has a role in the process that are studying in vivo, but it doesn’t necessarily tell how direct that role is. Biochemistry, by contrast, tells what a factor can do in vitro, but it doesn’t necessarily mean that it does it in vivo. The genetic and biochemical approaches tell you different things: Genetics Æ has a role, but not how direct Biochemistry Æ tells what a protein can do in vitro, but not whether it really does it in vivo These approaches therefore tell different things. Both are needed and are equally valuable. When one can combine these approaches to figure out what a xv gene/protein does, the resulting conclusions are much stronger than if one only use one of these strategies. DEVELOPMENT OF GENETICS AND MOLECULAR BIOLOGY 1866- Genetics start to get attention when Mendel Experimented with green peas and publish his finding 1910- Morgan revealed that the units of heredity are contained with chromosome, 1944- It is confirmed through studies on the bacteria that it was DNA that carried the genetic information. 1953-Franklin and Wilkins study DNA by X-ray crystallography which subsequently lead to unrevealing the double helical structure of DNA by Watson and Crick 1960s- Smith demonstrate that the DNA can be cleaved by restriction enzymes xvi 1966 -Gene transcription become reality 1975- Southern blot was invented 1977- DNA sequencing methodology discovered 1981-Genetic diagnosis of sickle cell disease was first shown to be feasible by kan and Chang 1985- PCR develop by Mullis an Co-workers 2001-Draft of Human genome sequence was revealed xvii Molecular Biology and Applied Genetics CHAPTER ONE THE CELL Specific learning objectives ⇒ Identify an eukaryotic and prokaryotic cell ⇒ Describe chemical composition of the cell membrane ⇒ List the structure found in a membrane ⇒ Describe the role of each component found in cell membrane 1.0. Eukaryotic and Prokaryotic Cell ► Cells in our world come in two basic types, prokaryotic and eukaryotic. "Karyose" comes from a Greek word which means "kernel," as in a kernel of grain. In biology, one use this word root to refer to the nucleus of a cell. "Pro" means "before," and "eu" means "true," or "good." ► So "Prokaryotic" means "before a nucleus," and "eukaryotic" means "possessing a true nucleus." 1

Advise: Why You Wasting Money in Costly SEO Tools, Use World's Best Free SEO Tool Ubersuggest.