Lecture notes on Communication engineering

lecture notes in electronics and communication engineering and what is electronics and communication engineering interview questions and answers pdf free download
Dr.SamuelHunt Profile Pic
Dr.SamuelHunt,United Arab Emirates,Teacher
Published Date:21-07-2017
Your Website URL(Optional)
Comment
EC2311-COMMUNICATION ENGINEERING III YEAR EEE A Introduction to Communication Engineering Communication Engineering Course Work introduces different methods of analog communication and their significance. Digital Communication methods for high bit rate transmission are explained. It involves the concepts of source and line coding techniques for enhancing rating of transmission of minimizing the errors in transmission and finally various media for digital communication are illustrated. Communication systems provide for electronic exchange of multimedia data such as Voice, data, video, music, email, web pages, etc. The common communication systems are Radio and TV broadcasting, Public Switched Telephone Network (voice,fax,modem), Cellular Phones, Computer networks (LANs, WANs, and the Internet), Satellite systems (pagers, voice/data, movie broadcasts), Bluetooth. Communication is the production and exchange of information and meaning by use of signs and symbols. It involves encoding and sending messages, receiving and decoding them, and synthesizing information and meaning. Communication permeates all levels of human experience and it is central to understanding human behavior and to nearly all public health efforts aimed at fostering health behavior change among individuals, populations, organizations, communities, and societies. www.annauniversityplus.com UNIT I ANALOG COMMUNICATION Analog Communication is a data transmitting technique in a format that utilizes continuous signals to transmit data including voice, image, video, electrons etc. An analog signal is a variable signal continuous in both time and amplitude which is generally carried by use of modulation. Analog circuits do not involve quantisation of information unlike the digital circuits and consequently have a primary disadvantage of random variation and signal degradation, particularly resulting in adding noise to the audio or video quality over a distance. Data is represented by physical quantities that are added or removed to alter data. Analog transmission is inexpensive and enables information to be transmitted from point- to-point or from one point to many. Once the data has arrived at the receiving end, it is converted back into digital form so that it can be processed by the receiving computer. Analog communication systems convert (modulate) analog signals into modulated (analog) signals). Communication systems convert information into a format appropriate for the transmission medium. The Block diagram of a communication system is given below: Fig.1 Communication System Block Diagram The Source encoder converts message into message signal or bits. The Transmitter converts message signal or bits into format appropriate for channel www.annauniversityplus.com transmission (analog/digital signal). The Channel introduces distortion, noise, and interference. Receiver decodes received signal back to message signal. Source decoder decodes message signal back into original message. Amplitude Modulation: Amplitude modulation (AM) is a technique used in electronic communication, most commonly for transmitting information via a radio carrier wave. AM works by varying the strength of the transmitted signal in relation to the information being sent. For example, changes in the signal strength can be used to specify the sounds to be reproduced by a loudspeaker, or the light intensity of television pixels. (Contrast this with frequency modulation, also commonly used for sound transmissions, in which the frequency is varied; and phase modulation, often used in remote controls, in which the phase is varied). In order that a radio signal can carry audio or other information for broadcasting or for two way radio communication, it must be modulated or changed in some way. Although there are a number of ways in which a radio signal may be modulated, one of the easiest, and one of the first methods to be used was to change its amplitude in line with variations of the sound. The basic concept surrounding what is amplitude modulation, AM, is quite straightforward. The amplitude of the signal is changed in line with the instantaneous intensity of the sound. In this way the radio frequency signal has a representation of the sound wave superimposed in it. In view of the way the basic signal "carries" the sound or modulation, the radio frequency signal is often termed the "carrier". www.annauniversityplus.com Fig.2 Amplitude Modulation, AM When a carrier is modulated in any way, further signals are created that carry the actual modulation information. It is found that when a carrier is amplitude modulated, further signals are generated above and below the main carrier. To see how this happens, take the example of a carrier on a frequency of 1 MHz which is modulated by a steady tone of 1 kHz. The process of modulating a carrier is exactly the same as mixing two signals together, and as a result both sum and difference frequencies are produced. Therefore when a tone of 1 kHz is mixed with a carrier of 1 MHz, a "sum" frequency is produced at 1 MHz + 1 kHz, and a difference frequency is produced at 1 MHz - 1 kHz, i.e. 1 kHz above and below the carrier. www.annauniversityplus.com If the steady state tones are replaced with audio like that encountered with speech of music, these comprise many different frequencies and an audio spectrum with frequencies over a band of frequencies is seen. When modulated onto the carrier, these spectra are seen above and below the carrier. It can be seen that if the top frequency that is modulated onto the carrier is 6 kHz, then the top spectra will extend to 6 kHz above and below the signal. In other words the bandwidth occupied by the AM signal is twice the maximum frequency of the signal that is used to modulated the carrier, i.e. it is twice the bandwidth of the audio signal to be carried. In Amplitude Modulation or AM, the carrier signal is given by It has an amplitude of ‘A’ modulated in proportion to the message bearing (lower frequency) signal to give The magnitude of m(t) is chosen to be less than or equal to 1, from reasons having to do with demodulation, i.e. recovery of the signal from the received signal. The modulation index is then defined to be The frequency of the modulating signal is chosen to be much smaller than that of the carrier signal. Try to think of what would happen if the modulating index were bigger than 1. www.annauniversityplus.com Fig.3. AM modulation with modulation index .2 Note that the AM signal is of the form This has frequency components at frequencies . F F F Fiiiig g g g....4 4 4 4:::: AM modulation with modulation index .4 www.annauniversityplus.com The version of AM that we described is called Double Side Band AM or DSBAM since we send signals at both , and at It is more efficient to transmit only one of the side bands (so-called Single Side Band AM or USBAM, LSBAM for upper and lower side bands respectively), or if the filtering requirements for this are too arduous to send a part of one of the side band. This is what is done in commercial analog NTSC television, which is known as Vestigial Side Band AM. The TV video signal has a bandwidth of about 4.25 MHz, but only 1 MHz of the lower side band of the signal is transmitted. The FCC allocates 6 MHz per channel (thus 0.75 MHz is left for the sound signal, which is an FM signal (next section)). You may have wondered how we can listen to AM radio channels on both stereo and mono receivers. The trick that is used to generate a modulating signal by adding a DSB version (carrier at 38 Khz suppressed) version of the output of the difference between the Left and Right channels added to the sum of the Left and Right channels unmodulated. The resulting modulating signal has a bandwidth of about 60 KHz. A mono receiver gets the sum signal whereas a stereo receiver separates out the difference as well and reconstitutes the Left and Right channel outputs. Amplitude demodulation Amplitude modulation, AM, is one of the most straightforward ways of modulating a radio signal or carrier. The process of demodulation, where the audio signal is removed from the radio carrier in the receiver is also quite simple as well. The easiest method of achieving amplitude demodulation is to use a simple diode detector. This consists of just a handful of components:- a diode, resistor and a capacitor. www.annauniversityplus.com Fig. 5 AM Diode Detector In this circuit, the diode rectifies the signal, allowing only half of the alternating waveform through. The capacitor is used to store the charge and provide a smoothed output from the detector, and also to remove any unwanted radio frequency components. The resistor is used to enable the capacitor to discharge. If it were not there and no other load was present, then the charge on the capacitor would not leak away, and the circuit would reach a peak and remain there. Advantages of Amplitude Modulation, AM There are several advantages of amplitude modulation, and some of these reasons have meant that it is still in widespread use today: • It is simple to implement • it can be demodulated using a circuit consisting of very few components • AM receivers are very cheap as no specialised components are needed. Disadvantages of amplitude modulation Amplitude modulation is a very basic form of modulation, and although its simplicity is one of its major advantages, other more sophisticated systems provide a number of www.annauniversityplus.com advantages. Accordingly it is worth looking at some of the disadvantages of amplitude modulation. • It is not efficient in terms of its power usage • It is not efficient in terms of its use of bandwidth, requiring a bandwidth equal to twice that of the highest audio frequency • It is prone to high levels of noise because most noise is amplitude based and obviously AM detectors are sensitive to it. Thus, AM has advantages of simplicity, but it is not the most efficient mode to use, both in terms of the amount of space or spectrum it takes up, and the way in which it uses the power that is transmitted. This is the reason why it is not widely used these days both for broadcasting and for two way radio communication. Even the long, medium and short wave broadcasts will ultimately change because of the fact that amplitude modulation, AM, is subject to much higher levels of noise than are other modes. For the moment, its simplicity, and its wide usage, mean that it will be difficult to change quickly, and it will be in use for many years to come. SINGLE SIDEBAND MODULATION Single sideband modulation is widely used in the HF portion, or short wave portion of the radio spectrum for two way radio communication. There are many users of single sideband modulation. Many users requiring two way radio communication will use single sideband and they range from marine applications, generally HF point to point transmissions, military as well as radio amateurs or radio hams. Single sideband modulation or SSB is derived from amplitude modulation (AM) and SSB modulation overcomes a number of the disadvantages of AM. Single sideband modulation is normally used for voice transmission, but technically it can be used for many other applications where two way radio communication using analogue signals is required. As a result of its widespread use there are many items of radio communication www.annauniversityplus.com equipment designed to use single sideband radio including: SSB receiver, SSB transmitter and SSB transceiver equipments. Single sideband, SSB modulation is basically a derivative of amplitude modulation, AM. By removing some of the components of the ordinary AM signal it is possible to significantly improve its efficiency. It is possible to see how an AM signal can be improved by looking at the spectrum of the signal. When a steady state carrier is modulated with an audio signal, for example a tone of 1 kHz, then two smaller signals are seen at frequencies 1 kHz above and below the main carrier. If the steady state tones are replaced with audio like that encountered with speech of music, these comprise many different frequencies and an audio spectrum with frequencies over a band of frequencies is seen. When modulated onto the carrier, these spectra are seen above and below the carrier. It can be seen that if the top frequency that is modulated onto the carrier is 6 kHz, then the top spectra will extend to 6 kHz above and below the signal. In other words the bandwidth occupied by the AM signal is twice the maximum frequency of the signal that is used to modulated the carrier, i.e. it is twice the bandwidth of the audio signal to be carried. Amplitude modulation is very inefficient from two points. The first is that it occupies twice the bandwidth of the maximum audio frequency, and the second is that it is inefficient in terms of the power used. The carrier is a steady state signal and in itself carries no information, only providing a reference for the demodulation process. Single sideband modulation improves the efficiency of the transmission by removing some unnecessary elements. In the first instance, the carrier is removed - it can be re-introduced in the receiver, and secondly one sideband is removed - both sidebands are mirror images of one another and the carry the same information. This leaves only one sideband - hence the name Single SideBand / SSB. SSB receiver While signals that use single sideband modulation are more efficient for two way radio communication and more effective than ordinary AM, they do require an increased level www.annauniversityplus.com of complexity in the receiver. As SSB modulation has the carrier removed, this needs to be re-introduced in the receiver to be able to reconstitute the original audio. This is achieved using an internal oscillator called a Beat Frequency Oscillator (BFO) or Carrier Insertion Oscillator (CIO). This generates a carrier signal that can be mixed with the incoming SSB signal, thereby enabling the required audio to be recovered in the detector. Typically the SSB detector itself uses a mixer circuit to combine the SSB modulation and the BFO signals. This circuit is often called a product detector because (like any RF mixer) the output is the product of the two inputs. It is necessary to introduce the carrier using the BFO / CIO on the same frequency relative to the SSB signal as the original carrier. Any deviation from this will cause the pitch of the recovered audio to change. Whilst errors of up to about 100 Hz are acceptable for communications applications including amateur radio, if music is to be transmitted the carrier must be reintroduced on exactly the correct frequency. This can be accomplished by transmitting a small amount of carrier, and using circuitry in the receiver to lock onto this. There are several types of two way radio communication that it is possible to listen to legally. Radio amateurs form a large group that short wave listeners can listen to quite legally, and the transmissions are easy to find as they are all contained within the amateur radio band allocations - see the section of this website on ham radio. In view of its popularity it is necessary to know how to tune an SSB signal and receive the SSB signal in the best way to ensure that the best copy is obtained. Although it is slightly more difficult to tune than an AM or FM signal, with a little practice, it is easy to become used to tuning them in. When receiving SSB it is necessary to have a basic understanding of how a receiver works. Most radio receivers that will be used to receive SSB modulation will be of the superheterodyne type. Here the incoming signals are converted down to a fixed intermediate frequency. It is at this stage where the BFO signal is mixed with the incoming SSB signals. It is necessary to set the BFO to the correct frequency to receive the form of SSB, either LSB or USB, that is expected. Many radio receivers will have a switch to select this, other receivers will have a BFO pitch control which effectively controls the frequency. The BFO needs to be positioned to be in the correct position for www.annauniversityplus.com when the signal is in the centre of the receiver passband. This typically means that it will be on the side of the passband of the receiver. To position the BFO, tune the SSB signal in for the optimum strength, i.e. ensure it is in the centre of the passband, and then adjust the BFO frequency for the correct pitch of the signal. Once this has been done, then the main tuning control of the receiver can be used, and once a signal is audible with the correct pitch, then it is also in the centre of the receiver passband. Tuning an SSB signal with the BFO set is quite easy. First set the receiver to the SSB position or the BFO to ON, and then if there is a separate switch set the LSB / USB switch to the format that is expected and then gradually tune the receiver. Adjust the main tuning control so that the pitch is correct, and the signal should be comprehensible. If it is not possible to distinguish the sounds, then set the LSB / USB switch to the other position and re-adjust the main tuning control if necessary to return the signal to the correct pitch, at which point the signal should be understandable. SSB advantages Single sideband modulation is often compared to AM, of which it is a derivative. It has several advantages for two way radio communication that more than outweigh the additional complexity required in the SSB receiver and SSB transmitter required for its reception and transmission. 1. As the carrier is not transmitted, this enables a 50% reduction in transmitter power level for the same level of information carrying signal. NB for an AM transmission using 100% modulation, half of the power is used in the carrier and a total of half the power in the two sideband - each sideband has a quarter of the power. 2. As only one sideband is transmitted there is a further reduction in transmitter power. www.annauniversityplus.com 3. As only one sideband is transmitted the receiver bandwidth can be reduced by half. This improves the signal to noise ratio by a factor of two, i.e. 3 dB, because the narrower bandwidth used will allow through less noise and interference. Single sideband modulation, SSB is the main modulation format used for analogue voice transmission for two way radio communication on the HF portion of the radio spectrum. Its efficiency in terms of spectrum and power when compared to other modes means that for many years it has been the most effective option to use. Now some forms of digital voice transmission are being used, but it is unlikely that single sideband will be ousted for many years as the main format used on these bands. Frequency Modulation While changing the amplitude of a radio signal is the most obvious method to modulate it, it is by no means the only way. It is also possible to change the frequency of a signal to give frequency modulation or FM. Frequency modulation is widely used on frequencies above 30 MHz, and it is particularly well known for its use for VHF FM broadcasting. Although it may not be quite as straightforward as amplitude modulation, nevertheless frequency modulation, FM, offers some distinct advantages. It is able to provide near interference free reception, and it was for this reason that it was adopted for the VHF sound broadcasts. These transmissions could offer high fidelity audio, and for this reason, frequency modulation is far more popular than the older transmissions on the long, medium and short wave bands. In addition to its widespread use for high quality audio broadcasts, FM is also sued for a variety of two way radio communication systems. Whether for fixed or mobile radio communication systems, or for use in portable applications, FM is widely used at VHF and above. To generate a frequency modulated signal, the frequency of the radio carrier is changed in line with the amplitude of the incoming audio signal. www.annauniversityplus.com Fig.5 Frequency Modulation, FM When the audio signal is modulated onto the radio frequency carrier, the new radio frequency signal moves up and down in frequency. The amount by which the signal moves up and down is important. It is known as the deviation and is normally quoted as the number of kilohertz deviation. As an example the signal may have a deviation of ±3 kHz. In this case the carrier is made to move up and down by 3 kHz. Broadcast stations in the VHF portion of the frequency spectrum between 88.5 and 108 MHz use large values of deviation, typically ±75 kHz. This is known as wide-band FM (WBFM). These signals are capable of supporting high quality transmissions, but occupy a large amount of bandwidth. Usually 200 kHz is allowed for each wide-band FM transmission. For communications purposes less bandwidth is used. Narrow band FM (NBFM) often uses deviation figures of around ±3 kHz. It is narrow band FM that is typically used for two-way radio communication applications. Having a narrower band it www.annauniversityplus.com is not able to provide the high quality of the wideband transmissions, but this is not needed for applications such as mobile radio communication. Fig. Frequency Modulation Advantages of frequency modulation, FM FM is used for a number of reasons and there are several advantages of frequency modulation. In view of this it is widely used in a number of areas to which it is ideally suited. Some of the advantages of frequency modulation are noted below: • Resilience to noise: One particular advantage of frequency modulation is its resilience to signal level variations. The modulation is carried only as variations in frequency. This means that any signal level variations will not affect the audio output, provided that the signal does not fall to a level where the receiver cannot cope. As a result this makes FM ideal for mobile radio communication applications including more general two-way radio communication or portable applications where signal levels are likely to vary considerably. The other advantage of FM is its resilience to noise and interference. It is for this reason that FM is used for high quality broadcast transmissions. • Easy to apply modulation at a low power stage of the transmitter: Another advantage of frequency modulation is associated with the transmitters. It is possible to apply the modulation to a low power stage of the transmitter, and it is not necessary to use a linear form of amplification to increase the power level of the signal to its final value. www.annauniversityplus.com • It is possible to use efficient RF amplifiers with frequency modulated signals: It is possible to use non-linear RF amplifiers to amplify FM signals in a transmitter and these are more efficient than the linear ones required for signals with any amplitude variations (e.g. AM and SSB). This means that for a given power output, less battery power is required and this makes the use of FM more viable for portable two-way radio applications. Applications Magnetic tape storage FM is also used at intermediate frequencies by all analog VCR systems, including VHS, to record both the luminance (black and white)portions of the video signal. Commonly, the chrome component is recorded as a conventional AM signal, using the higher-frequency FM signal as bias. FM is the only feasible method of recording the luminance ("black and white") component of video to and retrieving video from Magnetic tape without extreme distortion, as video signals have a very large range of frequency components — from a few hertz to several megahertz, too wide for equalizers to work with due to electronic noise below −60 dB. FM also keeps the tape at saturation level, and therefore acts as a form of noise reduction, and a simple limiter can mask variations in the playback output, and the FM capture effect removes print-through and pre-echo. A continuous pilot-tone, if added to the signal — as was done on V2000 and many Hi-band formats — can keep mechanical jitter under control and assist timebase correction. These FM systems are unusual in that they have a ratio of carrier to maximum modulation frequency of less than two; contrast this with FM audio broadcasting where the ratio is around 10,000. Consider for example a 6 MHz carrier modulated at a 3.5 MHz rate; by Bessel analysis the first sidebands are on 9.5 and 2.5 MHz, while the second sidebands are on 13 MHz and −1 MHz. The result is a sideband of reversed phase on +1 MHz; on demodulation, this results in an unwanted output at 6−1 = 5 MHz. The system must be designed so that this is at an acceptable level. www.annauniversityplus.com Sound FM is also used at audio frequencies to synthesize sound. This technique, known as FM synthesis, was popularized by early digital synthesizers and became a standard feature for several generations of personal computer sound cards. Radio Main article: FM broadcasting Edwin Howard Armstrong (1890–1954) was an American electrical engineer who invented wideband frequency modulation (FM) radio. He patented the regenerative circuit in 1914, the superheterodyne receiver in 1918 and the super-regenerative circuit in 1922. He presented his paper: "A Method of Reducing Disturbances in Radio Signaling by a System of Frequency Modulation", which first described FM radio, before the New York section of the Institute of Radio Engineers on November 6, 1935. The paper was published in 1936. As the name implies, wideband FM (WFM) requires a wider signal bandwidth than amplitude modulation by an equivalent modulating signal, but this also makes the signal more robust against noise and interference. Frequency modulation is also more robust against simple signal amplitude fading phenomena. As a result, FM was chosen as the modulation standard for high frequency, high fidelity radio transmission: hence the term "FM radio" (although for many years the BBC called it "VHF radio", because commercial FM broadcasting uses a well-known part of the VHF band—the FM broadcast band). FM receivers employ a special detector for FM signals and exhibit a phenomenon called capture effect, where the tuner is able to clearly receive the stronger of two stations being broadcast on the same frequency. Problematically however, frequency drift or lack of selectivity may cause one station or signal to be suddenly overtaken by another on an adjacent channel. Frequency drift typically constituted a problem on very old or inexpensive receivers, while inadequate selectivity may plague any tuner. www.annauniversityplus.com An FM signal can also be used to carry a stereo signal: see FM stereo. However, this is done by using multiplexing and demultiplexing before and after the FM process. The rest of this article ignores the stereo multiplexing and demultiplexing process used in "stereo FM", and concentrates on the FM modulation and demodulation process, which is identical in stereo and mono processes. A high-efficiency radio-frequency switching amplifier can be used to transmit FM signals (and other constant-amplitude signals). For a given signal strength (measured at the receiver antenna), switching amplifiers use less battery power and typically cost less than a linear amplifier. This gives FM another advantage over other modulation schemes that require linear amplifiers, such as AM and QAM. FM is commonly used at VHF radio frequencies for high-fidelity broadcasts of music and speech (see FM broadcasting). Normal (analog) TV sound is also broadcast using FM. A narrow band form is used for voice communications in commercial and amateur radio settings. In broadcast services, where audio fidelity is important, wideband FM is generally used. In two-way radio, narrowband FM (NBFM) is used to conserve bandwidth for land mobile radio stations, marine mobile, and many other radio services. www.annauniversityplus.com Unit 2 Digital Communication The transmission of digital data through a digital platform that has the ability to combine text, audio, graphics, video and data. Digital communication enables data to be transmitted in an efficient manner through the use of digitally encoded information sent through data signals. These data signals are easily compressed and, as such, can be transmitted with accuracy and speed. Unlike in an analog communications where the continuity of a varying signal can not be broken, in a digital communication a digital transmission can be broken down into packets as discrete messages. Transmitting data in discrete messages not only facilitates the error detection and correction but also enables a greater signal processing capability. Digital communication has, in large part, replaced analog communication as the ideal form of transmitting information through computer and mobile technologies. PHASE MODULATION Phase modulation (PM) is a form of modulation that represents information as variations in the instantaneous phase of a carrier wave. Unlike its more popular counterpart, frequency modulation (FM), PM is not very widely used for radio transmissions. This is because it tends to require more complex receiving hardware and there can be ambiguity problems in determining whether, for example, the signal has changed phase by +180° or -180°. Phase modulation is also similar to frequency modulation in the number of sidebands that exist within the modulated wave and the spacing between sidebands. Phase modulation will also produce an infinite number of sideband frequencies. The spacing between these sidebands will be equal to the frequency of the modulating signal. Before looking at phase modulation it is first necessary to look at phase itself. A radio frequency signal consists of an oscillating carrier in the form of a sine wave is the basis www.annauniversityplus.com of the signal. The instantaneous amplitude follows this curve moving positive and then negative, returning to the start point after one complete cycle - it follows the curve of the sine wave. This can also be represented by the movement of a point around a circle, the phase at any given point being the angle between the start point and the point on the waveform as shown. Phase modulation works by modulating the phase of the signal, i.e. changing the rate at which the point moves around the circle. This changes the phase of the signal from what it would have been if no modulation was applied. In other words the speed of rotation around the circle is modulated about the mean value. To achieve this it is necessary to change the frequency of the signal for a short time. In other words when phase modulation is applied to a signal there are frequency changes and vice versa. Phase and frequency are inseparably linked as phase is the integral of frequency. Frequency modulation can be changed to phase modulation by simply adding a CR network to the modulating signal that integrates the modulating signal. As such the information regarding sidebands, bandwidth and the like also hold true for phase modulation as they do for frequency modulation, bearing in mind their relationship. Forms of phase modulation Although phase modulation is used for some analogue transmissions, it is far more widely used as a digital form of modulation where it switches between different phases. This is known as phase shift keying, PSK, and there are many flavours of this. It is even possible to combine phase shift keying and amplitude keying in a form of modulation known as quadrature amplitude modulation, QAM. The list below gives some of the forms of phase shift keying that are used: www.annauniversityplus.com

Advise: Why You Wasting Money in Costly SEO Tools, Use World's Best Free SEO Tool Ubersuggest.