Lecture notes Physics

lecture notes on physics of semiconductor devices pdf, mathematical physics lecture notes undergraduate, undergraduate lecture notes in physics
Dr.ShaneMatts Profile Pic
Dr.ShaneMatts,United States,Teacher
Published Date:23-07-2017
Your Website URL(Optional)
Comment
SLAC-R-504 The BABAR Physics Book: Physics at an Asymmetric B Factory   This book presents the results of a year-long workshop devoted to a review of the physics opportunities of the BABAR experiment at the PEP-II B Factory, at the Stanford Linear Accelerator Center Laboratory. Work supported in part by US Department of Energy contract DE-AC02-76SF00515. SLAC National Accelerator Laboratory, Menlo Park, CA 94025Contents 1A C P Violation Primer 1 1.1CP ViolationinFieldTheories .... ... .... .... ... .... ... .. 2 1.1.1 Field Transformations . . . . . . .... .... ... .... ... .. 2 1.2 NeutralBMesons.... ... .... ... .... .... ... .... ... .. 5 1.2.1 Mixing of NeutralBMesons... .... .... ... .... ... .. 5 1.2.2 Phase Conventions . .... ... .... .... ... .... ... .. 7 1.2.3 Time Evolution of NeutralB Mesons .. .... ... .... ... .. 8 d 1.2.4 Two-Time Formalism for CoherentBBStates . ... .... ... .. 9 1.3 The Three Types ofCP Violation inB Decays . . . .... ... .... ... .. 12 1.3.1CP Violation in Decay . . . . . . .... .... ... .... ... .. 12 1.3.2CPViolationinMixing . . ... .... .... ... .... ... .. 14 1.3.3CP Violation in the Interference Between Decays With and Without Mixing .... ... .... ... .... .... ... .... ... .. 15 1.4CP ViolationintheStandardModel . ... .... .... ... .... ... .. 17 1.4.1 The CKM Picture ofCPViolation .... .... ... .... ... .. 17 1.4.2 Unitarity of the CKM Matrix . . . .... .... ... .... ... .. 19 1.4.3 Measuring CKM Parameters withCP -Conserving Processes . . . . . . 23 1.5 ExpectedCP Asymmetries—StandardModelPredictions ... .... ... .. 24 1.5.1CPViolationinMixing . . ... .... .... ... .... ... .. 24 1.5.2 Decay-Amplitude Weak-Phase Structure . .... ... .... ... .. 25 1.5.3 Low-Energy Effective Hamiltonians . . . .... ... .... ... .. 28 1.5.4 Decay Asymmetry Predictions in the Standard Model — GeneralPatterns . . .... ... .... .... ... .... ... .. 29xviii 1.5.5 Decay Asymmetry Predictions in the Standard Model — SomeSampleModes .... ... .... .... ... .... ... .. 32 1.5.6 Effects of Physics Beyond the Standard Model . . . . .... ... .. 34 1.6 Some Comments about theKSystem ... .... .... ... .... ... .. 35 1.6.1 The NeutralKSystem ... ... .... .... ... .... ... .. 35 1.6.2 MeasuringCP Violation in theKSystem .... ... .... ... .. 37 0 1.6.3 The" and" Parameters . ... .... .... ... .... ... .. 38 K K 2 Introduction to HadronicB Physics 43 2.1 The Operator Product Expansion . . . . . . .... .... ... .... ... .. 46 2.1.1 General Considerations . . . . . . .... .... ... .... ... .. 46 2.1.2 Example I: Weakb Decays . . . . .... .... ... .... ... .. 47 2.1.3 Radiative Corrections.... ... .... .... ... .... ... .. 49 2.1.4 Example II: Penguins and Box Diagrams .... ... .... ... .. 50 2.1.5 Summary . . . . . . .... ... .... .... ... .... ... .. 51 2.2 TheHeavy-QuarkExpansion . .... ... .... .... ... .... ... .. 52 2.2.1 Separation of Scales .... ... .... .... ... .... ... .. 52 2.2.2 Heavy-Quark Symmetry . . . . . .... .... ... .... ... .. 53 2.2.3 Heavy-Quark Effective Theory . . .... .... ... .... ... .. 54 2.2.4 Application of the HQE toB Decays . . .... ... .... ... .. 56 2.2.5 Limitations of the HQE . . . . . . .... .... ... .... ... .. 59 2.3 LightFlavorSymmetry . ... .... ... .... .... ... .... ... .. 60 2.3.1 Chiral Lagrangians . .... ... .... .... ... .... ... .. 60 2.3.2 Heavy-Hadron Chiral Perturbation Theory . . . . . . .... ... .. 61 2.3.3 Factorization, Color Flow, and Vacuum Saturation . . .... ... .. 62 2.4 Lattice Gauge Theory . . . . . .... ... .... .... ... .... ... .. 64 2.5 QCDSumRules. .... ... .... ... .... .... ... .... ... .. 66 REPORT OF THE BABAR PHYSICS WORKSHOPxix 2.6 Quark Models and Related Methods . . . . .... .... ... .... ... .. 68 2.7 FurtherReading . .... ... .... ... .... .... ... .... ... .. 70 3 An Introduction to the BAB AR Experiment 73 + 3.1eeBFactoriesandPEP-II . .... ... .... .... ... .... ... .. 73 3.1.1 Cross-Sections at the(4S) ... .... .... ... .... ... .. 74 3.1.2 Data Taking in the Continuum . . .... .... ... .... ... .. 75 3.2 Overview of the BAB ARDetector.... ... .... .... ... .... ... .. 78 3.3 The Silicon Vertex Tracker . . .... ... .... .... ... .... ... .. 81 3.3.1 Physics Requirements and Performance Goals . . . . . .... ... .. 81 3.3.2 Silicon Vertex Tracker Layout . . .... .... ... .... ... .. 82 3.3.3 The Silicon Microstrip Detectors . .... .... ... .... ... .. 84 3.3.4 Silicon Vertex Tracker Readout . .... .... ... .... ... .. 85 3.3.5 Silicon Vertex Tracker Space Resolution . .... ... .... ... .. 86 3.3.6 Calibration and Alignment . . . . .... .... ... .... ... .. 88 3.4 TheDriftChamber ... ... .... ... .... .... ... .... ... .. 88 3.4.1 Drift Chamber Design . . . . . . .... .... ... .... ... .. 89 3.4.2 Drift Chamber Electronics . . . . .... .... ... .... ... .. 92 3.4.3 Prototype Results . . .... ... .... .... ... .... ... .. 92 3.5 TheDIRC . ... .... ... .... ... .... .... ... .... ... .. 93 3.5.1 DIRC Concept and Hardware Overview . .... ... .... ... .. 94 3.5.2 DIRC Acceptance . .... ... .... .... ... .... ... .. 95 3.5.3 DIRC Performance . .... ... .... .... ... .... ... .. 95 3.6 TheElectromagneticCalorimeter... ... .... .... ... .... ... .. 96 3.6.1 Performance Goals and Layout . . .... .... ... .... ... .. 96 3.6.2 Crystal Subassemblies and Readout . . . .... ... .... ... .. 99 3.6.3 Calibration . . . . . .... ... .... .... ... .... ... .. 100 REPORT OF THE BABAR PHYSICS WORKSHOPxx 3.7 TheMuonandNeutralHadronDetector .. .... .... ... .... ... .. 102 3.7.1 The Detector Layout .... ... .... .... ... .... ... .. 102 3.7.2 The Active Detectors .... ... .... .... ... .... ... .. 104 3.7.3 The Readout System .... ... .... .... ... .... ... .. 104 3.8 TheTrigger ... .... ... .... ... .... .... ... .... ... .. 105 4 Snapshot of BAB AR Software and Analysis Tools 111 4.1 Simulation. ... .... ... .... ... .... .... ... .... ... .. 111 4.1.1 Event Generators . . .... ... .... .... ... .... ... .. 112 4.1.2 Full Detector Simulation . . . . . .... .... ... .... ... .. 113 4.1.3 Fast Detector Simulation:Aslund ... .... ... .... ... .. 115 4.2 Reconstruction . .... ... .... ... .... .... ... .... ... .. 118 4.2.1 Tracking . . . . . . .... ... .... .... ... .... ... .. 119 4.2.2 Reconstruction in the Electromagnetic Calorimeter . . .... ... .. 121 4.3 ChargedParticleIdentification .... ... .... .... ... .... ... .. 125 4.3.1 Charged Hadron Identification . . .... .... ... .... ... .. 126 4.3.2 Electron Identification . . . . . . .... .... ... .... ... .. 129 4.3.3 Muon Identification . .... ... .... .... ... .... ... .. 135 4.3.4 Identification of Particles with Neural Networks . . . . .... ... .. 138 4.4 NeutralParticleIdentification. .... ... .... .... ... .... ... .. 144 0 4.4.1 andPhotonIdentification ... .... .... ... .... ... .. 144 0 4.4.2K Identification . . .... ... .... .... ... .... ... .. 145 L 4.5 Vertexing and Kinematic Fitting . . . . . . .... .... ... .... ... .. 153 4.5.1 Vertex Reconstruction . . . . . . .... .... ... .... ... .. 153 4.5.2 Kinematical Fitting . .... ... .... .... ... .... ... .. 155 4.6 Reconstruction of Particle Decays . . . . . .... .... ... .... ... .. 159 0 4.6.1K .. .... ... .... ... .... .... ... .... ... .. 159 S REPORT OF THE BABAR PHYSICS WORKSHOPxxi 4.6.2D andD ... ... .... ... .... .... ... .... ... .. 160 4.7 MultivariateAnalysisTools . . .... ... .... .... ... .... ... .. 165 4.7.1 Presentation of the Different Methods . . .... ... .... ... .. 165 4.7.2 Description ofCornelius ... .... .... ... .... ... .. 169 4.8 Tagging .. ... .... ... .... ... .... .... ... .... ... .. 171 4.8.1 Direct- and Reverse-Sign Classes .... .... ... .... ... .. 171 4.8.2 The Tagging Strategy.... ... .... .... ... .... ... .. 172 4.8.3 Definition of Discriminating Variables . .... ... .... ... .. 173 4.8.4 Definition of Categories of Events Treated.... ... .... ... .. 175 4.8.5 Performances of the Tagging Methods . . .... ... .... ... .. 176 4.8.6 Measuring the Tagging Performance with Real Data . .... ... .. 178 4.8.7 Future Prospects and Improvements . . . .... ... .... ... .. 180 4.8.8 Conclusions . . . . . .... ... .... .... ... .... ... .. 180 4.9 Tools for Continuum Identification . . . . . .... .... ... .... ... .. 181 4.9.1 Criteria for Continuum Identification . . .... ... .... ... .. 181 4.9.2 A Common Procedure for Background Fighting . . . . .... ... .. 185 4.9.3 Performance . . . . .... ... .... .... ... .... ... .. 186 4.10 Extraction ofCP Asymmetries .... ... .... .... ... .... ... .. 187 4.10.1 Fit Equations . . . . .... ... .... .... ... .... ... .. 187 4.10.2 Adding Flavor-Tagging Information . . . .... ... .... ... .. 189 4.10.3 Likelihood Estimate ofA.. ... .... .... ... .... ... .. 190 4.10.4 Error of the Likelihood Estimate . .... .... ... .... ... .. 191 4.10.5 The Kin Variable . . .... ... .... .... ... .... ... .. 193 4.11 Data Production . .... ... .... ... .... .... ... .... ... .. 194 5 Determination of 199 5.1 Theoretical Review ofsin2 Measurements .... .... ... .... ... .. 199 REPORT OF THE BABAR PHYSICS WORKSHOPxxii 5.1.1 Decays That Can Measure ... .... .... ... .... ... .. 199 5.1.2 Uncertainties: Penguins and FSI phases . .... ... .... ... .. 204 5.1.3 Angular Analyses to ExtractCP Amplitudes . . ... .... ... .. 213 5.1.4 Isospin Analysis . . .... ... .... .... ... .... ... .. 221 5.1.5 Modeling the Uncertainty on .. .... .... ... .... ... .. 222 5.1.6 Measurement of in Inclusive Decays . . .... ... .... ... .. 229 5.1.7 Discrete Ambiguities .... ... .... .... ... .... ... .. 231 5.1.8 Summary of Data on Decays Measuring .... ... .... ... .. 236 5.2 Experimental Considerations forsin2 Analyses . .... ... .... ... .. 241 5.3 Charmonium+Kaonmodes . .... ... .... .... ... .... ... .. 242 0 0 5.3.1BJ= K . ... .... ... .... .... ... .... ... .. 243 S 0 0 5.3.2BJ= K . ... .... ... .... .... ... .... ... .. 247 L 000 5.3.3B K .. ... .... ... .... .... ... .... ... .. 253 L 00 5.3.4BK . ... .... ... .... .... ... .... ... .. 255 c1 L 0 5.4 Charmonium +K Modes . . .... ... .... .... ... .... ... .. 258 5.4.1 Event Selection . . . .... ... .... .... ... .... ... .. 260 0 0 5.4.2 Measurement ofsin2 with the DecayBJ= K .... ... .. 264 + 5.5DD ,DD,andDD FinalStates ... .... .... ... .... ... .. 265 0+ 5.5.1 Study ofBDD ... ... .... .... ... .... ... .. 265 0+ 5.5.2 Study ofBDD .. ... .... .... ... .... ... .. 275 5.5.3 Estimates for theDDMode... .... .... ... .... ... .. 291 5.5.4 Measurement ofCP Asymmetries and Extraction of .... ... .. 292 5.6 Penguin Modes . .... ... .... ... .... .... ... .... ... .. 301 000 5.6.1BK .. ... .... ... .... .... ... .... ... .. 302 S 000 5.6.2 Analysis ofBK .. ... .... .... ... .... ... .. 306 L 5.6.3 Analysis ofK .. .... ... .... .... ... .... ... .. 307 REPORT OF THE BABAR PHYSICS WORKSHOPxxiii 0 5.6.4 Estimates forBK .. ... .... .... ... .... ... .. 315 S 00 5.6.5 Analysis ofBK ... ... .... .... ... .... ... .. 315 L 5.7 SummaryandConclusions .. .... ... .... .... ... .... ... .. 318 5.7.1 Summary of Results .... ... .... .... ... .... ... .. 318 5.7.2 Systematic Errors . . .... ... .... .... ... .... ... .. 321 5.7.3 Conclusion . . . . . .... ... .... .... ... .... ... .. 322 6 Determinations of and DirectCP Violation 327 6.1 Theoretical Background: The Role of Penguins and -Extraction .... ... .. 327 6.1.1 Extraction of -Ignoring Penguins .... .... ... .... ... .. 328 6.1.2 Extraction of in the Presence of Penguins . . . . . . .... ... .. 330 6.2 Penguins and DirectCP Violation . . ... .... .... ... .... ... .. 346 6.2.1 Varieties of DirectCP Violation . .... .... ... .... ... .. 346 6.2.2 Illustrative Examples of DirectCP .... .... ... .... ... .. 348 6.3 OverviewoftheExperimentalStudies ... .... .... ... .... ... .. 353 6.4B-Decay Modes with Two Pions . . . . . . .... .... ... .... ... .. 353 + 6.4.1 The Decay Mode . . . . . .... .... ... .... ... .. 354 00 6.4.2 The Decay Mode . . . . . . .... .... ... .... ... .. 359 +0 6.4.3 The Decay Mode . . . . . . .... .... ... .... ... .. 361 0+ 6.4.4 Extraction ofCP Asymmetries from theB Decay Mode . . . 364 6.4.5 Isospin Analysis . . .... ... .... .... ... .... ... .. 368 000 6.4.6 withoutB ? ... ... .... .... ... .... ... .. 370 6.4.7 Conclusions . . . . . .... ... .... .... ... .... ... .. 376 6.5B Decay Modes with Three Pions . . . . . .... .... ... .... ... .. 376 6.5.1 Event Selection . . . .... ... .... .... ... .... ... .. 378 6.5.2 Analysis . . . . . . .... ... .... .... ... .... ... .. 388 6.5.3 Conclusion . . . . . .... ... .... .... ... .... ... .. 403 REPORT OF THE BABAR PHYSICS WORKSHOPxxiv 6.6B-Decay Modes with Four Pions . . . . . . .... .... ... .... ... .. 404 6.6.1 Overview . . . . . . .... ... .... .... ... .... ... .. 404 6.6.2 Thea Decay Modes . . . . . . .... .... ... .... ... .. 405 1 6.6.3 The Decay Modes .... ... .... .... ... .... ... .. 429 6.6.4 Summary and Conclusion for Four-Pion Channels . . .... ... .. 437 6.7 Conclusions ... .... ... .... ... .... .... ... .... ... .. 438 6.8 ChargedB Decays and DirectCPViolation .... .... ... .... ... .. 441 6.8.1B h .. ... .... ... .... .... ... .... ... .. 442 0 6.8.2BDD . ... .... ... .... .... ... .... ... .. 443 6.8.3 Outlook .... ... .... ... .... .... ... .... ... .. 444 7 Methods of Measuring 449 7.1 Introduction and Motivation for Measuring ... .... ... .... ... .. 449 7.2 An Overview of Methods for Extracting . .... .... ... .... ... .. 449 7.3 Experimental Errors in Extracting fromTriangles .... ... .... ... .. 453 7.4 Methods UsingB DK Decays . . . . . .... .... ... .... ... .. 456 7.4.1 Theoretical Framework . . . . . . .... .... ... .... ... .. 456 7.4.2 Experimental Feasibility Studies . .... .... ... .... ... .. 460 7.5 Methods Using Flavor Symmetries . . . . . .... .... ... .... ... .. 466 7.5.1 Theoretical Framework . . . . . . .... .... ... .... ... .. 466 7.5.2 A Simple Strategy for Extracting ... .... ... .... ... .. 470 7.5.3 Constraints from CombinedB K Branching Ratios . . . . . . . 473 u;d 7.5.4 Experimental Feasibility Studies . .... .... ... .... ... .. 478 () 7.6 Partial Reconstruction ofBD .. .... .... ... .... ... .. 481 d 7.6.1 Theoretical Framework . . . . . . .... .... ... .... ... .. 483 7.6.2 The Experimental Approach . . . .... .... ... .... ... .. 484 7.7 Strategies to Determine fromB Decays . .... .... ... .... ... .. 491 s REPORT OF THE BABAR PHYSICS WORKSHOPxxv 7.8 Summary of Results and Overall Reach . .... .... ... .... ... .. 493 8 SemileptonicB Decays and the Extraction ofjVj andjVj 499 cbub 8.1 Exclusive SemileptonicB Decays to Charmed Mesons . . . . . .... ... .. 499 8.1.1 Heavy-Quark Symmetry . . . . . .... .... ... .... ... .. 499 8.1.2 Determination ofjVj ... ... .... .... ... .... ... .. 502 cb 8.1.3 Dispersive Bounds and Unitarity Constraints on Form Factors . . . . . 505 8.1.4 Tests of Heavy-Quark Symmetry . .... .... ... .... ... .. 507 8.1.5B Decays top-WaveCharmMesons .. .... ... .... ... .. 508 8.2 Exclusive SemileptonicB Decays to Light Mesons and Determination ofjVj . . 512 ub 8.2.1 Heavy-to-Light Form Factors from Lattice QCD . . . .... ... .. 513 8.2.2 Dispersive Bounds on Heavy-to-Light Form Factors . .... ... .. 515 8.2.3 Heavy-to-Light Form Factors from Light-Cone Sum Rules . . . . . . . 517 8.2.4 Using SemileptonicD Decays and Dispersive Bounds to ExtractjVj . 520 ub 8.3 Inclusive Semileptonicbc Decays . . . . .... .... ... .... ... .. 521 8.3.1 Determination ofjVj ... ... .... .... ... .... ... .. 526 cb 8.3.2 Aspects of InclusiveB Decays . .... .... ... .... ... .. 529 8.4jVj from Inclusive Semileptonicbu Decays . . .... ... .... ... .. 530 ub 8.5 TheorySummary .... ... .... ... .... .... ... .... ... .. 532 8.6 Studying Semileptonic Decays with the B AB ARDetector .. ... .... ... .. 534 8.6.1 The Experimental Environment . .... .... ... .... ... .. 534 8.6.2 Semileptonic Event Generators . . .... .... ... .... ... .. 534 8.6.3 Reconstruction of the OtherB .. .... .... ... .... ... .. 535 8.7 MeasuringjVj Using HQET in Exclusive Decays . .... ... .... ... .. 538 cb 8.8 MeasuringjVj Using Exclusive Decays . . .... .... ... .... ... .. 539 ub 8.9 MeasuringjVj with Inclusive Decays . . . .... .... ... .... ... .. 540 cb 8.10 MeasuringjVj with Inclusive Decays . . . .... .... ... .... ... .. 544 ub REPORT OF THE BABAR PHYSICS WORKSHOPxxvi 8.11 Conclusions . . . .... ... .... ... .... .... ... .... ... .. 547 9 RareB Decays within the Standard Model 557 9.1 Leptonic Decays . .... ... .... ... .... .... ... .... ... .. 557 9.1.1B‘ ... ... .... ... .... .... ... .... ... .. 559 ‘ 0+ 9.1.2B‘‘ .. ... .... ... .... .... ... .... ... .. 564 + 9.1.3B‘;‘‘ .. .... ... .... .... ... .... ... .. 566 9.2bs(d)+ XTransitions .. .... ... .... .... ... .... ... .. 572 9.2.1BX ; X ... .... ... .... .... ... .... ... .. 577 s d 9.2.2BX .. ... .... ... .... .... ... .... ... .. 590 s 9.2.3BX ll; X ll... .... ... .... .... ... .... ... .. 592 s d 9.2.4BX .. ... .... ... .... .... ... .... ... .. 608 s 9.2.5BX + Gluon . .... ... .... .... ... .... ... .. 613 s 9.3 Model-IndependentTestoftheStandardModel . . .... ... .... ... .. 625 9.4 Summary . ... .... ... .... ... .... .... ... .... ... .. 627 10 HadronicB Meson Decays 639 10.1 Exclusive Hadronic Decays: The Factorization Ansatz in Nonleptonic Decays of HeavyMesons.. .... ... .... ... .... .... ... .... ... .. 640 10.1.1 The BSW Approach .... ... .... .... ... .... ... .. 647 10.1.2 Phenomenology of Nonfactorizable Contributions . . . .... ... .. 653 10.1.3 Towards an Understanding of Factorization. Departures from Factor- ization. .... ... .... ... .... .... ... .... ... .. 653 10.1.4 Tests of Factorization.... ... .... .... ... .... ... .. 659 10.1.5 Factorization in Multibody Decays.... .... ... .... ... .. 665 10.2 The Role of Final State Interactions inB Decays . .... ... .... ... .. 667 10.3 Heavy-Quark Chiral Perturbation Theory . .... .... ... .... ... .. 678 10.4 Inclusive Properties ofB Meson Decays . . .... .... ... .... ... .. 681 REPORT OF THE BABAR PHYSICS WORKSHOPxxvii 10.4.1 Fully Integrated Rates . . . . . . .... .... ... .... ... .. 681 10.4.2 Semi-inclusive Transitions . . . . .... .... ... .... ... .. 685 10.4.3 Charm Production and Charm Counting . .... ... .... ... .. 685 10.4.4 Production of Light Hadrons . . . .... .... ... .... ... .. 690 10.5B Meson Decays to Baryons . .... ... .... .... ... .... ... .. 694 10.5.1 Exclusive Decays to Baryons . . . .... .... ... .... ... .. 700 10.5.2CP Violation in Baryonic Decays .... .... ... .... ... .. 702 11 Non-CPb Physics 709 11.1 Overview . . . . .... ... .... ... .... .... ... .... ... .. 709 11.2 The Determination ofm .. .... ... .... .... ... .... ... .. 710 B 00 11.2.1 Theory ofB –B Mixing . ... .... .... ... .... ... .. 710 11.2.2 Measurement ofm ... ... .... .... ... .... ... .. 717 B 11.3 Lifetimes . . . . .... ... .... ... .... .... ... .... ... .. 726 11.3.1 Lifetimes and Inclusive Semileptonic Decays . . . . . .... ... .. 726 11.3.2 Lifetime Ratios . . . .... ... .... .... ... .... ... .. 737 11.3.3 The Semileptonic Branching Fraction . . .... ... .... ... .. 741 11.3.4B-Lifetime Ratio Measurement at BAB AR . .... ... .... ... .. 743 11.4 Bottomonium Physics . . . . . .... ... .... .... ... .... ... .. 753 11.4.1(4S)ResonanceParameters . . .... .... ... .... ... .. 753 11.4.2(4S) Decays toB-MesonPairs . .... .... ... .... ... .. 757 11.4.3 NonBB Decays of the(4S) .. .... .... ... .... ... .. 761 11.5 The Case for(5S) Running . .... ... .... .... ... .... ... .. 766 11.5.1 CDFB Reach . . . .... ... .... .... ... .... ... .. 767 s 11.5.2 PartialB Reconstruction . ... .... .... ... .... ... .. 767 s 11.5.3B -Meson Lifetime Differences . .... .... ... .... ... .. 770 s 11.5.4B Production Cross-Section . . . .... .... ... .... ... .. 773 s REPORT OF THE BABAR PHYSICS WORKSHOPxxviii 11.5.5 PEP-II Options for Running Above the(4S) .. ... .... ... .. 775 11.6 Summary and Conclusions . . .... ... .... .... ... .... ... .. 775 12 Charm, , QCD, and Two-Photon Physics 783 12.1 Charm Physics . .... ... .... ... .... .... ... .... ... .. 784 12.1.1 Searches for New Physics . . . . .... .... ... .... ... .. 795 12.1.2 Purely Leptonic Decays ofD andD .. .... ... .... ... .. 804 s 12.1.3 Semileptonic Decays .... ... .... .... ... .... ... .. 807 12.1.4 Hadronic Charm Decays . . . . . .... .... ... .... ... .. 815 12.2 Physics . ... .... ... .... ... .... .... ... .... ... .. 820 12.2.1 Present Status . . . . .... ... .... .... ... .... ... .. 820 12.2.2 Limits on the Mass ... ... .... .... ... .... ... .. 826 12.2.3 Determination of the Strange-Quark Mass .... ... .... ... .. 827 12.2.4CP Violation in Hadronic Decays . . . .... ... .... ... .. 828 12.2.5 Lorentz Structure of Decays . . .... .... ... .... ... .. 829 12.2.6 Rare Decays . . . .... ... .... .... ... .... ... .. 832 12.2.7 ElectricDipoleMoment . ... .... .... ... .... ... .. 835 12.3 Two-Photon Physics . . . . . . .... ... .... .... ... .... ... .. 837 12.3.1 Monte Carlo Simulations and BAB AR Rate Estimates . . .... ... .. 838 12.3.2 Resonance Production . . . . . . .... .... ... .... ... .. 839 12.3.3 Exclusive Hadron Production and QCD . .... ... .... ... .. 842 12.4 Light-Meson Spectroscopy inB,D ,andD Decays .... ... .... ... .. 844 s 12.4.1B decays . . . . . . .... ... .... .... ... .... ... .. 846 12.4.2D andD Decays . . .... ... .... .... ... .... ... .. 848 s 12.5 Baryon Formation .... ... .... ... .... .... ... .... ... .. 853 12.6 General Conclusions on Non-BPhysics . . .... .... ... .... ... .. 856 REPORT OF THE BABAR PHYSICS WORKSHOPxxix 13 Physics Beyond the Standard Model 867 13.1 Baryogenesis . . .... ... .... ... .... .... ... .... ... .. 868 13.2 Model-Independent Analysis of Mixing . . .... .... ... .... ... .. 870 13.2.1 The Basic Assumptions and Results . . . .... ... .... ... .. 870 13.2.2 Discrete Ambiguities .... ... .... .... ... .... ... .. 872 13.2.3 The(;)Plane . . .... ... .... .... ... .... ... .. 874 13.2.4 The(sin2;sin2)Plane . ... .... .... ... .... ... .. 876 13.2.5 Final Comments . . .... ... .... .... ... .... ... .. 876 13.3 New Physics Effects inCP -ViolatingB Decays . . .... ... .... ... .. 878 13.3.1 Effects in Decays . . .... ... .... .... ... .... ... .. 878 13.3.2 Formalism . . . . . .... ... .... .... ... .... ... .. 879 13.3.3 The Different Decay Channels . . .... .... ... .... ... .. 880 13.3.4 Standard Model Corrections . . . .... .... ... .... ... .. 882 13.3.5 Overview of New Physics Possibilities . . .... ... .... ... .. 884 13.4 Supersymmetry . .... ... .... ... .... .... ... .... ... .. 887 13.4.1 The SupersymmetricCPProblems ... .... ... .... ... .. 887 13.4.2 Classes of Supersymmetric Models . . . .... ... .... ... .. 888 13.4.3 Supersymmetry withoutR-parity .... .... ... .... ... .. 891 13.4.4 Model-Independent Analysis . . . .... .... ... .... ... .. 897 13.5 Models with Extra Scalars . . .... ... .... .... ... .... ... .. 903 13.5.1 The General MHDM .... ... .... .... ... .... ... .. 903 13.5.2BPhysicsImplications ... ... .... .... ... .... ... .. 905 13.5.3 2HDM .... ... .... ... .... .... ... .... ... .. 906 13.6 Models with Additional Quarks.... ... .... .... ... .... ... .. 907 13.6.1 Isosinglet Quarks . . .... ... .... .... ... .... ... .. 907 13.6.2 Fourth Generation . .... ... .... .... ... .... ... .. 909 REPORT OF THE BABAR PHYSICS WORKSHOPxxx 13.7 Left-Right Symmetric Model . .... ... .... .... ... .... ... .. 911 13.8 Models with Additional Strong Dynamics . .... .... ... .... ... .. 916 13.8.1 FCNC Effects in Topcolor-Assisted Technicolor . . . . .... ... .. 917 13.8.2 Model-Independent Analysis . . . .... .... ... .... ... .. 919 13.9 Summary . . . . .... ... .... ... .... .... ... .... ... .. 920 14 Overall Determinations of the CKM Matrix 933 14.1 The Problem of Theoretical Uncertainties . .... .... ... .... ... .. 934 14.2 Individual Constraints on the Unitarity Triangle . . .... ... .... ... .. 934 14.2.1 ThejV=VjConstraint .. ... .... .... ... .... ... .. 938 ubcb 14.2.2 Them Constraint ... ... .... .... ... .... ... .. 939 B d 14.2.3 The Constraint . .... ... .... .... ... .... ... .. 942 K 0 14.2.4 The Status of= .. .... ... .... .... ... .... ... .. 943 14.2.5 Impact ofK Decays . . . .... .... ... .... ... .. 944 14.2.6 Determination ofsin2 .. ... .... .... ... .... ... .. 945 14.2.7 Determination ofsin2 .. ... .... .... ... .... ... .. 946 14.3 The Determination of the CKM Parameters .... .... ... .... ... .. 948 14.3.1 Method for Extracting CKM Parameters . .... ... .... ... .. 948 14.3.2 Present Constraints on the Unitarity Triangle . . . . . .... ... .. 949 14.3.3 Including BAB ARCP AsymmetryMeasurements . ... .... ... .. 958 q 14.3.4 Determination offB andB usingCP Asymmetries . . . . . . 964 BBK dd 14.3.5 In Case of Incompatibility . . . . .... .... ... .... ... .. 965 14.3.6 Other Possible Future Constraints .... .... ... .... ... .. 967 14.4 Conclusions . . . .... ... .... ... .... .... ... .... ... .. 969 A The EffectivejjBj =1 Hamiltonian 973 B Some Remarks on Form-Factor Models 981 REPORT OF THE BABAR PHYSICS WORKSHOPxxxi B.1 Introduction . . . .... ... .... ... .... .... ... .... ... .. 981 B.1.1 Why Use Quark Models? . . . . . .... .... ... .... ... .. 981 B.1.2 General Features of Quark Models for Form Factors . .... ... .. 982 B.2 HybridModelsandPurelyPhenomenologicalModels ... ... .... ... .. 986 B.2.1 Hybrid Models . . . .... ... .... .... ... .... ... .. 986 B.2.2 Discussion of the Idea of Nearby-Pole Dominance . . .... ... .. 987 B.2.3 Purely Phenomenological Models .... .... ... .... ... .. 989 B.3 FullQuarkModelApproaches .... ... .... .... ... .... ... .. 990 B.3.1 Bethe-Salpeter Approach . . . . . .... .... ... .... ... .. 990 B.3.2 Three-Dimensional Approaches . .... .... ... .... ... .. 991 B.3.3 Classification of Three-Dimensional Approaches . . . .... ... .. 992 B.3.4 Connection between Bethe-Salpeter Formalism and Three-Dimensional Models .... ... .... ... .... .... ... .... ... .. 996 B.3.5 Quantitative Predictions of Three-Dimensional Models .... ... .. 997 B.4 Conclusions ... .... ... .... ... .... .... ... .... ... .. 998 C Standard Model Parameters from Lattice QCD 1003 C.1 Evaluation of Physical Quantities in Lattice Simulations . . . . . .... ... .. 1004 C.2 MainSourcesofUncertainty . .... ... .... .... ... .... ... .. 1007 C.3 QuarkMasses . . .... ... .... ... .... .... ... .... ... .. 1008 C.4 Leptonic Constants of Pseudoscalar Heavy Mesons .... ... .... ... .. 1010 00 00 C.5B -B andK -K Mixing .. .... ... .... .... ... .... ... .. 1012 C.6 Semileptonic Decays ofD andBMesons . .... .... ... .... ... .. 1014 C.6.1 SemileptonicD Decays . . . . . .... .... ... .... ... .. 1015 C.6.2 SemileptonicBD andBD Decays . . . . . . .... ... .. 1016 C.6.3 SemileptonicB andB Decays and the Rare DecayBK 1017 C.7 TheParametersoftheHQET . .... ... .... .... ... .... ... .. 1021 REPORT OF THE BABAR PHYSICS WORKSHOPxxxii C.7.1 The Evaluation of the Mass of a Heavy Quark . . . . . .... ... .. 1022 C.7.2 Kinetic Energy of a Heavy Quark .... .... ... .... ... .. 1023 C.7.3 The Matrix Element of the Chromomagnetic Operator .... ... .. 1025 C.8 Exclusive Nonleptonic Decays of Heavy Mesons . .... ... .... ... .. 1025 D Standard Model Parameters from QCD Sum Rules 1031 D.1 QuarkMasses . . .... ... .... ... .... .... ... .... ... .. 1037 D.1.1 Non-Strange-Quark Masses:m+m . .... ... .... ... .. 1038 ud D.1.2 Strange-Quark Mass:m .. ... .... .... ... .... ... .. 1039 s D.1.3 Charm-Quark Mass:M .. ... .... .... ... .... ... .. 1040 c D.1.4 Beauty-Quark Mass:M .. ... .... .... ... .... ... .. 1041 b D.2 Leptonic Constants of Pseudoscalar Heavy Mesons .... ... .... ... .. 1042 D.3B andB ... .... ... .... ... .... .... ... .... ... .. 1044 BK d D.4 Heavy-to-Light Decay Form Factors from Light-Cone Sum Rules . . . . . . . . 1045 D.4.1 Semileptonic Decays .... ... .... .... ... .... ... .. 1045 D.4.2 Rare Decays . . . . .... ... .... .... ... .... ... .. 1049 D.4.3 Strong Coupling Constants . . . . .... .... ... .... ... .. 1049 D.4.4 The Heavy-Quark Limit . . . . . .... .... ... .... ... .. 1050 D.4.5 Theoretical Accuracy and Possible Developments . . . .... ... .. 1050 REPORT OF THE BABAR PHYSICS WORKSHOP1 ACP Violation Primer This chapter is a primer on the subject ofCP violation. It is intended as an introductory background for physicists joining the BAB AR experiment. Much of the emphasis is on the physics relevant to that experiment. However other related topics are briefly reviewed and summarized. The subject ofCP symmetry and its violation is often referred to as one of the least understood in particle physics. Perhaps a better statement would be to say that it is experimentally one of the least constrained.CP symmetry violation is an expected consequence of the Standard Model with three quark generations, but is one of the least well-tested parts of that model. The only part of CP violation that currently is considered puzzling by theorists is the lack ofCP violation in strong interactions. That subject is outside the realm of this document and of B AB AR experiments. TheCP violation that shows up in a small fraction of weak decays is accommodated simply in the three- generation Standard Model Lagrangian. All it requires is thatCP is not imposed as a symmetry. However, while it is known thatCP violation occurs, because it has been observed inK decays 1, it is not yet known whether the pattern ofCP violation predicted by the minimal Standard Model is the one found in nature. TheK-decay observations, together with other measurements, place constraints on the parameters of the Standard Model mixing matrix (the CKM matrix 2, 3) but do not yet provide any test. A multitude ofCP -violating effects are expected inB decays, some of which are very cleanly predicted by the Standard Model. If enough independent observations ofCP violation inB decays can be made then it will be possible to test the Standard Model predictions forCP violation. Either the relationships between various measurements will be consistent with the Standard Model predictions and fully determine the CKM parameters or there will be no single choice of CKM parameters that is consistent with all measurements. This latter case, of course, would be much more interesting. It would indicate that there is a contribution of physics beyond the Standard Model. There may be enough information in the pattern of the inconsistencies to learn something about the nature of the new physics contributions. Thus the aim of the game is to measure enough quantities to impose redundant constraints on Standard Model parameters, including particularly the convention-independent combinations of CP -violating phases of CKM matrix elements. One may well ask, after the many successes of the Standard Model, why one would expect violations to show up in such a low-energy regime. The best answer is simply that it has not yet been tested. Theorists will give a variety of further reasons. Many extensions of the Standard2A CP Violation Primer Model have additional sources ofCP -violating effects, or effects which change the relationship of the measurable quantities to theCP -violating parameters of the Standard Model. In addition there is one great puzzle in cosmology that relates toCP violation, and that is the disappearance of antimatter from the Universe 4. In grand unified theories, or even in the Standard Model at sufficiently high temperatures, there are baryon number-violating processes. If such processes are active then thermal equilibrium produces equal populations of particles and antiparticles. Thus in modern theories of cosmology the net baryon number of the universe is zero in the early high-temperature epochs. Today it is clearly not zero, at least in our local region. A full discussion of the cosmological arguments is not possible here. It suffices to remark that there is large class of theories in which the baryon number asymmetry is generated at the weak- phase transition 5. Such theories, however, must includeCP violation from sources beyond the minimal Standard Model. Calculations made in that model show that it does not generate a large enough matter-antimatter imbalance to produce the baryon number to entropy ratio observed in the universe today. This is a hint thatCP violation from beyond Standard Model sources is worth looking for. It is by no means a rigorous argument. There are theories in which baryon number is generated at a much higher temperature and then protected from thermalization to zero byBL (baryon number minus lepton number) symmetry. Such theories do not in general require any new low-energyCP -violation mechanism. Neither do they forbid it. More generally, since there isCP violation in part of the theory, any extension of the Standard Model cannot be required to beCP symmetric. Any additional fields in the theory bring possible additionalCP -violating couplings. Even assumptions such as soft or spontaneousCP symmetry breaking leave a wide range of possibilities. Further experimental constraints, from experiments such as theB factory, are needed. Section 1.1 begins by discussing the wayCP violation appears in a field theory Lagrangian 6. 1 Sections 1.2–1.6, follow the discussion in 7. Section 1.2 turns to the quantum mechanics and time dependence of neutral meson systems, and Section 1.3 gives a model-independent treatment of the possible types ofCP violation. Following that, Section 1.4 presents the Standard Model version ofCP violation, and Section 1.5 gives the predictions and relationships for various decays that arise from that theory. Finally, in Section 1.6, the situation forK-decays is reviewed. 1.1CP Violation in Field Theories 1.1.1 Field Transformations This section provides a basic introduction to the field theory basis ofCP symmetry breaking. The fundamental point is thatCP symmetry is broken in any theory that has complex coupling 1 For a recent, excellent, and very detailed review see 8. REPORT OF THE BABAR PHYSICS WORKSHOP1.1CP Violation in Field Theories 3 constants in the Lagrangian which cannot be removed by any choice of phase redefinition of the fields in the theory. Three discrete operations are potential symmetries of a field theory Lagrangian 6: Two of them, parity and time reversal are spacetime symmetries and constitute part of the Poincare ´ group. Parity, denoted byP , sends(t;x)(t;x), reversing the handedness of space. Time reversal, denoted byT , sends(t;x)(t;x), interchanging the forward and backward light-cones. A third (non- spacetime) discrete operation is charge conjugation, denoted byC. This operation interchanges particles and antiparticles. The combinationCP replaces a particle by its antiparticle and reverses momentum and helicity. The combination CPT is an exact symmetry in any local Lagrangian field theory. What is the status of these symmetry operations in the real world? From experiment, it is observed that electromagnetic and strong interactions are symmetric with respect toP ,C andT . The weak interactions violateC andP separately, but preserveCP andT to a good approximation. Only certain rare processes, all involving neutralK mesons, have been observed to exhibitCP violation. All observations to date are consistent with exact CPT symmetry. (Gravitation couples to the energy-momentum tensor and is thusC,P,andT invariant. This is supported by the universality of the gravitational coupling for different types of matter, with different baryon number to mass ratios.) To understand whether a given theory can accommodateCP violation, one needs to know the transformation properties of the fields under the various discrete symmetries. In particular for a Dirac spinor: 0 P (t;x)P= (t;x); (1.1) 13 T (t;x)T= (t;x); (1.2) 02T C (t;x)C=i( (t;x)): (1.3) The Lagrangian, being a Lorentz scalar, can only depend on terms bilinear in fermion fields (and not on single fermion fields). The transformation properties of various fermion bilinears underCP are summarized in the table below. Here the shorthand(1)1 for =0 and(1) 1 for =1; 2; 3 (namely,(1)a=a )isused. 55 term i jjjj iiii (1.4) 55 CP transformedterm i (1) (1) iiii jjjj Similarly, theCP transformation properties of scalar (H), pseudoscalar (A) and vector boson (W ) fields, and also of the derivative operator are given by termHAW : (1.5) CP transformedtermHA(1)W(1) REPORT OF THE BABAR PHYSICS WORKSHOP

Advise: Why You Wasting Money in Costly SEO Tools, Use World's Best Free SEO Tool Ubersuggest.