Lecture notes on Wireless Sensor Networks

wireless sensor networks applications and challenges and how to design wireless sensor networks. what is wireless sensor networks architecture pdf free download
VoiletFord Profile Pic
VoiletFord,United States,Professional
Published Date:12-07-2017
Your Website URL(Optional)
Comment
WIRELESS SENSOR NETWORKS A Networking Perspective Edited by Jun Zheng Abbas Jamalipour A JOHN WILEY & SONS, INC., PUBLICATIONWIRELESS SENSOR NETWORKSIEEE Press 445 Hoes Lane Piscataway, NJ 08854 IEEE Press Editorial Board Lajos Hanzo, Editor in Chief R. Abari T. Chen B. M. Hammerli J. Anderson T. G. Croda O. Malik S. Basu M. El-Hawary S. Nahavandi A. Chatterjee S. Farshchi W. Reeve Kenneth Moore, Director of IEEE Book and Information Services (BIS) Jeanne Audino, Project EditorWIRELESS SENSOR NETWORKS A Networking Perspective Edited by Jun Zheng Abbas Jamalipour A JOHN WILEY & SONS, INC., PUBLICATIONCopyright © 2009 by Institute of Electrical and Electronics Engineers. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifi cally disclaim any implied warranties of merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profi t or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com Library of Congress Cataloging-in-Publication Data is available. ISBN: 978-0-470-16763-2 Printed in the United States of America. 10 9 8 7 6 5 4 3 2 1To our parents and familyCONTENTS Preface xxiii Acknowledgments xxv About the Editors xxvii Contributors xxix 1. INTRODUCTION TO WIRELESS SENSOR NETWORKS 1 Jun Zheng and Abbas Jamalipour 1.1 Overview of Wireless Sensor Networks 1 1.1.1 Network Characteristics 2 1.1.2 Network Applications 3 1.1.2.1 Environmental Monitoring 3 1.1.2.2 Military Applications 4 1.1.2.3 Health Care Applications 4 1.1.2.4 Industrial Process Control 5 1.1.2.5 Security and Surveillance 5 1.1.2.6 Home Intelligence 5 1.1.3 Network Design Objectives 6 1.1.4 Network Design Challenges 7 1.2 Technological Background 8 1.2.1 MEMS Technology 9 1.2.2 Wireless Communication Technology 9 1.2.3 Hardware and Software Platforms 10 1.2.3.1 Hardware Platforms 11 1.2.3.2 Software Platforms 11 1.2.4 Wireless Sensor Network Standards 12 1.2.4.1 The IEEE 802.15.4 Standard 12 1.2.4.2 The ZigBee Standard 13 1.2.4.3 The IEEE 1451 Standard 13 viiviii CONTENTS 1.3 Features of This Book 15 1.4 Organization of This Book 15 References 16 2. NETWORK ARCHITECTURES AND PROTOCOL STACK 19 Jun Zheng 2.1 Introduction 19 2.2 Network Architectures for Wireless Sensor Networks 20 2.2.1 Sensor Node Structure 20 2.2.2 Network Architectures 21 2.2.2.1 Flat Architecture 22 2.2.2.2 Hierarchical Architecture 22 2.3 Classifi cations of Wireless Sensor Networks 24 2.4 Protocol Stack for Wireless Sensor Networks 26 2.4.1 Application Layer 28 2.4.2 Transport Layer 28 2.4.3 Network Layer 29 2.4.4 Data Link Layer 29 2.4.5 Physical Layer 30 2.5 Summary 31 References 31 3. MEDIUM ACCESS CONTROL 35 Jun Zheng 3.1 Introduction 35 3.2 Fundamental MAC Protocols 36 3.2.1 Contention-Based MAC Protocols 36 3.2.2 Contention-Free MAC Protocols 38 3.3 MAC Design for Wireless Sensor Networks 39 3.3.1 Network Characteristics 39 3.3.2 Objectives of MAC Design 40 3.3.3 Energy Effi ciency in MAC Design 41 3.4 MAC Protocols for Wireless Sensor Networks 42 3.4.1 Contention-Based Protocols 42 3.4.1.1 S-MAC 43 3.4.1.2 DS-MAC 46 3.4.1.3 MS-MAC 46 3.4.1.4 D-MAC 47 3.4.1.5 Sift 49CONTENTS ix 3.4.1.6 T-MAC 50 3.4.1.7 WiseMAC 51 3.4.1.8 CSMA Based MAC with Adaptive Rate Control 52 3.4.2 Contention-Free Protocols 53 3.4.2.1 Traffi c-Adaptive Medium Access 53 3.4.2.2 Self-Organizing Medium Access Control 55 3.4.2.3 Distributed Energy-Aware MAC 55 3.4.2.4 Implicit Prioritized MAC 56 3.4.2.5 Contention-Free Scheduling TDMA MAC 57 3.4.2.6 CDMA Sensor MAC 57 3.4.3 Hybrid Protocols 58 3.4.3.1 Spatial TDMA and CSMA Preamble Sampling 59 3.4.3.2 Z-MAC 59 3.4.3.3 Funneling-MAC 60 3.5 Summary and Future Directions 61 References 62 4. ROUTING AND DATA DISSEMINATION 67 Sajal K. Das and Habib M. Ammari 4.1 Introduction 67 4.2 Fundamentals and Challenges 68 4.2.1 Fundamentals 68 4.2.1.1 Terminology 68 4.2.1.2 Energy Model 70 4.2.2 Challenges 71 4.2.2.1 Sensor Characteristics 71 4.2.2.2 Field Nature 71 4.2.2.3 Network Characteristics 72 4.2.2.4 Sensing Application Requirements 72 4.3 Taxonomy of Routing and Data Dissemination Protocols 73 4.3.1 Location Information 74 4.3.2 Network Layering and In-Network Processing 74 4.3.3 Data Centricity 75 4.3.4 Path Redundancy 75 4.3.5 Network Dynamics 76 4.3.6 Quality of Service Requirements 76 4.3.7 Network Heterogeneity 77x CONTENTS 4.4 Overview of Routing and Data Dissemination Protocols 77 4.4.1 Location-Aided Protocols 78 4.4.1.1 Geographic Adaptive Fidelity 78 4.4.1.2 Geographic and Energy-Aware Routing 80 4.4.1.3 Coordination of Power Saving with Routing 81 4.4.1.4 Trajectory-Based Forwarding 82 4.4.1.5 Bounded Voronoi Greedy Forwarding 83 4.4.1.6 Geographic Random Forwarding 83 4.4.1.7 Minimum Energy Communication Network 84 4.4.1.8 Small Minimum-Energy Communication Network 87 4.4.2 Layered and In-Network Processing-Based Protocols 87 4.4.2.1 Low-Energy Adaptive Clustering Hierarchy 88 4.4.2.2 Power-Effi cient Gathering in Sensor Information Systems 89 4.4.2.3 Threshold Sensitive Energy Effi cient Sensor Network Protocol 90 4.4.2.4 Adaptive Periodic TEEN 92 4.4.3 Data-Centric Protocols 93 4.4.3.1 Sensor Protocols for Information via Negotiation 93 4.4.3.2 Directed Diffusion 95 4.4.3.3 Rumor Routing 98 4.4.3.4 The Cougar Approach 98 4.4.3.5 Active Query Forwarding 100 4.4.3.6 Energy-Aware Data-Centric Routing 101 4.4.3.7 Information-Directed Routing 103 4.4.3.8 Quorum-Based Information Dissemination 107 4.4.3.9 Home Agent-Based Information Dissemination 108 4.4.4 Multipath-Based Protocols 109 4.4.4.1 Disjoint Paths 109 4.4.4.2 Braided Paths 110 4.4.4.3 N-to-1 Multipath Discovery 110CONTENTS xi 4.4.5 Mobility-Based Protocols 113 4.4.5.1 Joint Mobility and Routing Protocol 113 4.4.5.2 Data MULES Based Protocol 114 4.4.5.3 Two-Tier Data Dissemination 115 4.4.5.4 Scalable Energy-Effi cient Asynchronous Dissemination 117 4.4.5.5 Dynamic Proxy Tree-Based Data Dissemination 121 4.4.6 QoS Based Protocols 123 4.4.6.1 Trade-Off between Energy Savings and Delay 124 4.4.6.2 Trade-Off between Energy Savings and Robustness 125 4.4.6.3 Trade-Off between Traffi c Overhead and Reliability 127 4.4.7 Heterogeneity-Based Protocols 129 4.4.7.1 Benefi ts of Heterogeneity in Wireless Sensor Networks 129 4.4.7.2 Information-Driven Sensor Query 131 4.4.7.3 Constrained Anisotropic Diffusion Routing 132 4.4.7.4 Cluster-Head Relay Routing 134 4.4.8 Comparisons 136 4.5 Summary and Future Directions 137 References 139 5. BROADCASTING, MULTICASTING, AND GEOCASTING 145 Baoxian Zhang and Guoliang Xue 5.1 Introduction 145 5.2 Concepts and Major Challenges 146 5.2.1 Basic Concepts 146 5.2.2 Design Guidelines and Challenges 147 5.3 Broadcasting Mechanisms 149 5.3.1 Simple Broadcasting Mechanisms 149 5.3.1.1 Blind Broadcast 149 5.3.1.2 Probability-Based Broadcast 149 5.3.1.3 Distance-Based Broadcast 150 5.3.1.4 Area-Based Broadcast 150 5.3.1.5 Counter-Based Broadcast 150xii CONTENTS 5.3.2 Neighborhood-Aware Broadcasting Mechanisms 150 5.3.2.1 Neighbor Elimination Strategy 151 5.3.2.2 Connected-Dominating-Set-Based Broadcasting Strategy 151 5.3.2.3 Cluster-Based Broadcasting Strategy 152 5.3.3 Location-Aided Broadcasting Mechanisms 153 5.3.3.1 Integrated Distance and Angle-Based Broadcast 153 5.3.3.2 Geographic Adaptive Fidelity 153 5.3.3.3 Grid-Based Routing Structure 154 5.3.4 Energy-Effi cient Broadcasting Mechanisms 156 5.3.4.1 Broadcast Incremental Power 156 5.3.4.2 Near-Maximum Lifetime Broadcast 157 5.3.4.3 Min-Hop Maximum Residual Energy Broadcast 157 5.3.4.4 Localized Power-Effi cient Broadcast 158 5.3.5 Reliable Broadcasting Mechanisms 158 5.3.5.1 Recursive Reliable Unicast 159 5.3.5.2 Most Reliable Spanning Tree 159 5.3.5.3 Integrated Round-Robin Reliable Unicast and Promiscuous Listening 159 5.3.5.4 Broadcast with Selective Acknowledgments and Double Coverage 160 5.3.5.5 TDMA Based Broadcast 160 5.4 Multicasting Mechanisms 160 5.4.1 Tree-Based Multicasting Mechanisms 161 5.4.1.1 Multicast-Enabled Ad Hoc On-Demand Distance Vector Routing 161 5.4.1.2 Centralized Power-Aware Multicast 162 5.4.1.3 Localized Power-Aware Multicast 162 5.4.2 Location-Based Multicasting Mechanisms 162 5.4.2.1 Scalable Energy-Effi cient Asynchronous Dissemination 163 5.4.2.2 Geographic Multicast Routing 163 5.4.2.3 Two-Tier Data Dissemination 163 5.5 Geocasting Mechanisms 164 5.5.1 Nonguaranteed Geocasting Mechanisms 164 5.5.1.1 Unicast Routing with Area Delivery 164 5.5.1.2 Directed-Flooding-Based Geocasting 165 5.5.1.3 Performance Comparison 165CONTENTS xiii 5.5.2 Guaranteed Geocasting Mechanisms 166 5.5.2.1 Simple Flooding 166 5.5.2.2 Geocasting via Effi cient Broadcasting 166 5.5.2.3 Geocasting via Face Routing 166 5.6 Summary and Future Directions 167 Acknowledgments 168 References 169 6. NODE CLUSTERING 173 Chao Zhang, Edwin Hou, and Nirwan Ansari 6.1 Introduction 173 6.1.1 Wireless Sensor Network Architectures 174 6.1.1.1 Homogenous Sensor Networks 174 6.1.1.2 Heterogeneous Sensor Networks 176 6.1.1.3 Hybrid Sensor Networks 176 6.1.2 Node Clustering Structures 178 6.1.2.1 Regularly Placed Nodes Deployment 179 6.1.2.2 Randomly Distributed Nodes Deployment 179 6.2 Node Clustering Algorithms 180 6.2.1 Cluster-Head Election Algorithms 181 6.2.1.1 Lowest ID Clustering Algorithm 181 6.2.1.2 Highest Connectivity Clustering Algorithm 182 6.2.1.3 Least Cluster Change Algorithm 182 6.2.1.4 Weighted Clustering Algorithm 183 6.2.2 Node Clustering Algorithms in Ad Hoc Networks 183 6.2.2.1 Linked Cluster Algorithm 184 6.2.2.2 Max–Min D-Clustering Algorithm 185 6.2.2.3 Mobility-Based Clustering Algorithm 187 6.3 Node Clustering Algorithms for Wireless Sensor Networks 188 6.3.1 Specialties for Clustering in Wireless Sensor Networks 188 6.3.2 Passive Clustering for Effi cient Flooding 189 6.3.3 Energy-Effi cient Adaptive Clustering 193 6.3.4 Energy-Effi cient Distributed Clustering 195 6.3.5 Energy-Effi cient Hierarchical Clustering 196 6.3.5.1 Multitier Hierarchical Clustering 196 6.3.5.2 Energy-Effi cient Hierarchical Clustering 197 6.3.5.3 Distributed Weight-Based Hierarchical Clustering 199xiv CONTENTS 6.3.6 Algorithm for Cluster Establishment 201 6.3.7 Secure Clustering 203 6.4 Summary and Future Directions 208 References 209 7. QUERY PROCESSING AND DATA AGGREGATION 215 Torsha Banerjee and Dharma P. Agrawal 7.1 Introduction 215 7.2 Query Processing in Wireless Sensor Networks 217 7.2.1 Query Characteristics 217 7.2.1.1 Query Operators 218 7.2.1.2 Query Classifi cation 218 7.2.2 Challenges in Query Processing 220 7.2.3 Sensor Selection for Query Processing 221 7.2.4 Query Processing Techniques 222 7.2.4.1 Query Flooding 222 7.2.5 Snapshot Querying 225 7.2.5.1 Acquisitional Query Processing 226 7.3 Data Aggregation in Wireless Sensor Networks 229 7.3.1 Challenges in Data Aggregation 229 7.3.2 Data Aggregation Techniques 230 7.3.2.1 Energy-Effi cient Data Aggregation 230 7.3.2.2 Neural-Network-Based Data Aggregation 232 7.3.2.3 Delay-Constrained Data Aggregation 233 7.3.2.4 QoS Constrained Data Aggregation 235 7.3.2.5 Data Aggregation for Range Query 237 7.3.2.6 Structure-Free Data Aggregation 237 7.4 Summary and Future Directions 239 References 240 8. NODE LOCALIZATION 243 Nayef A. Alsindi and Kaveh Pahlavan 8.1 Introduction 243 8.2 Concepts and Challenges of Node Localization Technologies 244 8.2.1 Evolution of Localization Technologies 244 8.2.2 Localization Systems 245 8.2.3 Challenges of Node Localization in Wireless Sensor Networks 247CONTENTS xv 8.3 Ranging Techniques for Wireless Sensor Networks 248 8.3.1 TOA Based Ranging 249 8.3.1.1 Direct Spread Spectrum 253 8.3.1.2 Ultra-Wideband Ranging 253 8.3.2 RSS Based Ranging 254 8.4 Wireless Localization Algorithms 257 8.4.1 Background 258 8.4.2 Geometrical Triangulation Techniques 258 8.4.2.1 Least-Squares Algorithm 259 8.4.2.2 Weighted Least-Squares Algorithm 260 8.4.2.3 Practical Performance Considerations 261 8.4.3 Pattern Recognition Techniques 262 8.5 Wireless Sensor Node Localization 262 8.5.1 Cooperative Localization 263 8.5.2 Centralized Localization Algorithms 267 8.5.3 Distributed Localization Algorithms 269 8.5.3.1 Multihop Network Localization 272 8.5.3.2 Recursive Position Estimation 275 8.6 Summary and Future Directions 279 References 280 9. TIME SYNCHRONIZATION 285 Fikret Sivrikaya and Bülent Yener 9.1 Introduction 285 9.1.1 Computer Clocks and the Synchronization Problem 286 9.1.2 Common Challenges for Synchronization Methods 287 9.2 Need for Synchronization in Wireless Sensor Networks 288 9.3 Requirements of Synchronization in Wireless Sensor Networks 289 9.4 Synchronization Protocols for Wireless Sensor Networks 290 9.4.1 Synchronization Primitives 290 9.4.1.1 Two-Way Message Exchange 290 9.4.1.2 Reference Broadcast Synchronization 291 9.4.1.3 Tiny-Sync and Mini-Sync 292 9.4.2 Multihop Synchronization 295 9.4.2.1 Multihop RBS 295 9.4.2.2 Timing-Sync Protocol 296 9.4.2.3 Lightweight Tree-Based Synchronization 297 9.4.2.4 Flooding Time Synchronization Protocol 298xvi CONTENTS 9.4.3 Long-Term Synchronization 299 9.4.3.1 Post-facto Synchronization 300 9.4.3.2 Time-Diffusion Synchronization Protocol 300 9.4.3.3 Rate Adaptive Time Synchronization 301 9.4.4 Other Protocols and Relevant Work 302 9.5 Summary and Future Directions 303 References 305 10. ENERGY EFFICIENCY AND POWER CONTROL 307 Nikolaos A. Pantazis and Dimitrios D. Vergados 10.1 Introduction 307 10.2 Need for Energy Effi ciency and Power Control in Wireless Sensor Networks 308 10.2.1 Power Consumption in Sensor Nodes 308 10.2.2 Power Control at Different Protocol Layers 311 10.2.3 Classifi cation of Power Conservation Mechanisms for Wireless Sensor Networks 313 10.3 Passive Power Conservation Mechanisms 314 10.3.1 Physical-Layer Power Conservation Mechanisms 314 10.3.1.1 Dynamic Voltage Scheduling 315 10.3.1.2 Dynamic Power Management 315 10.3.1.3 Embedded Power Supply for Low-Power Digital Signal Processors 317 10.3.1.4 Energy-Effi cient System Partitioning 317 10.3.1.5 Energy-Effi cient Link Layer 318 10.3.2 MAC Layer Power Conservation Mechanisms 318 10.3.3 Higher Layer Power Conservation Mechanisms 320 10.3.3.1 Sensor-MAC 320 10.3.3.2 Energy Effi ciency Using Sleep Mode TDMA Scheduling 321 10.3.3.3 SS-TDMA: A Self-Stabilizing MAC 323 10.3.3.4 Link Scheduling 324 10.3.3.5 Energy-Latency Trade-Offs for Data Gathering 324 10.3.3.6 TDMA Scheduling 325 10.3.3.7 Wave Scheduling 325 10.3.3.8 Joint Optimization with Energy Constraints 326 10.3.3.9 Energy-Effi cient Coordination for Topology Maintenance 326CONTENTS xvii 10.4 Active Power Conservation Mechanisms 327 10.4.1 MAC Layer Mechanisms 327 10.4.1.1 Multiple Access with Collision Avoidance 327 10.4.1.2 Multiple Access with Collision Avoidance Wireless 328 10.4.1.3 Floor Acquisition Multiple Access 328 10.4.1.4 Intelligent Medium Access with Busy Tone and Power Control 328 10.4.1.5 Power Controlled Multiple Access 329 10.4.1.6 Power Adaptation for Starvation Avoidance 330 10.4.2 Network Layer Mechanisms 331 10.4.2.1 Minimum Cost Forwarding 332 10.4.2.2 Energy Aware Routing 332 10.4.2.3 Minimum Power Confi guration 333 10.4.2.4 Cost-Effective Maximum Lifetime Routing 333 10.4.2.5 Power-Aware Sensor Selection 334 10.4.2.6 Self-Organizing Routing 335 10.4.3 Transport Layer Mechanisms 335 10.4.3.1 Experimental Study on TCP’s Energy Consumption 335 10.4.3.2 Reliable and Energy-Effi cient Transport Protocol 336 10.4.3.3 Sensor Transmission Control Protocol 336 10.5 Summary 337 References 337 11. TRANSPORT PROTOCOLS AND QUALITY OF SERVICE 343 Chonggang Wang, Bo Li, and Kazem Sohraby 11.1 Introduction 343 11.2 Traditional Transport Protocols 346 11.2.1 Principles of Traditional Transport Protocols 346 11.2.2 Disadvantages of TCP and UDP 347 11.3 Transport Protocol Design for Wireless Sensor Networks 349 11.3.1 Performance Metrics 349 11.3.2 Congestion Control 351 11.3.2.1 Congestion Detection 351 11.3.2.2 Congestion Notifi cation 351 11.3.2.3 Congestion Mitigation and Avoidance 352

Advise: Why You Wasting Money in Costly SEO Tools, Use World's Best Free SEO Tool Ubersuggest.