How to increase your creative mind

how to get your creative mind going and how to train your creative mind
AnnyPearson Profile Pic
AnnyPearson,Qatar,Researcher
Published Date:04-07-2017
Your Website URL(Optional)
Comment
CONTENTS Preface to the second edition ix Preface to the first edition xi Acknowledgments xii In a Nutshell 1 1 The Mystery of Creativity 11 2 The Story so Far 25 3 Thinking the Impossible 40 4 Maps of the Mind 54 5 Concepts of Computation 88 6 Creative Connections 125 7 Unromantic Artists 147 8 Computer-scientists 199 9 Chance, Chaos, Randomness, Unpredictability 233 10 Elite or Everyman? 256 11 Of Humans and Hoverflies 277 viiIN A NUTSHELL Creativity and computers: what could these possibly have to do with one another? ‘Nothing’ many people would say. Creativity is a marvel of the human mind. But computers, with all due apologies to Mario, Sonic and friends, are basically just tin cans. It follows – doesn’t it? – that the two are related only by their utter incompatibility. Well, no. Computers and creativity make interesting partners with respect to two different projects. One, which interests me the most, is understanding human creativity. The other is trying to produce machine creativity – or rather machine ‘creativity’ – in which the computer at least appears to be creative to some degree. What is creativity? First things first. Human creativity is something of a mystery, not to say a paradox. One new idea may be creative, while another is merely new. What’s the difference? And how is creativity possible? Creative ideas are unpredictable. Sometimes they even seem to be impossible – and yet they happen. How can that be explained? Could a scientific psychology help us to understand how creativity is possible? Creativity is the ability to come up with ideas or artefacts that are new, surprising and valuable. ‘Ideas’ here include concepts, poems, musical compositions, scientific theories, cookery recipes, choreography, jokes – and so on. ‘Artefacts’ include paintings, sculptures, steam engines, vac- uum cleaners, pottery, origami, penny whistles – and many other things you can name. As these very diverse examples suggest, creativity enters into virtually every aspect of life. It’s not a special ‘faculty’ but an aspect of human intelli- gence in general: in other words, it’s grounded in everyday abilities such as conceptual thinking, perception, memory, and reflective self-criticism. So it isn’t confined to a tiny elite: every one of us is creative, to a degree. 1IN A NUTSHELL Nor is it an all-or-nothing affair. Rather than asking ‘Is that idea creative, yes or no?’ we should ask ‘Just how creative is it, and in just which way(s)?’ Asking that question will help us to appreciate the subtleties of the idea itself, and also to get a sense of just what sorts of psychological process could have brought it to mind in the first place. Creative ideas, then, are new. But of course, there’s new – and there’s new. Ask a teacher, for instance. Children can come up with ideas that are new to them, even though they may have been in the textbooks for years. Someone who comes up with a bright idea is not necessarily less creative just because someone else had it before them. Indeed, if the person who had it first was Shakespeare, or Euclid, we’d think even more highly of the achievement. Suppose a twelve-year old girl who had never read Macbeth compared the healing power of sleep with someone knitting up a ravelled sleeve. Would you refuse to say she was creative just because the Bard had said it first? Perhaps, if you’d been talking around the topic with her, encouraging her to come up with non-literal ways of speaking, and even putting one or more of the three key ideas into the conversation. Otherwise you’d have to acknowledge her remark as a truly imaginative one. What you might do – and what I think you should do in this situation – is make a distinction between ‘psychological’ creativity and ‘historical’ creativity (P-creativity and H-creativity, for short). P–creativity involves coming up with a surprising, valuable idea that’s new to the person who comes up with it. It doesn’t matter how many people have had that idea before. But if a new idea is H–creative, that means that (so far as we know) no one else has had it before: it has arisen for the first time in human history. Clearly, H-creativity is a special case of P-creativity. For historians of art, science and technology – and for encyclopedia users, too – H-creativity is what’s important. And in daily life we appreciate it too: it really isn’t true that ‘The old jokes are the best ones’. But for someone who is trying to understand the psychology of creativity, it’s P-creativity that’s crucial. Never mind who thought of the idea first: how did that person manage to come up with it, given that they had never thought of it before? If ‘new’, in this context, has two importantly different meanings, ‘surprising’ has three. An idea may be surprising because it’s unfamiliar, or even unlikely – like a hundred-to-one outsider winning the Derby. This sort of surprise goes against statistics. The second sort of surprise is more interesting. An unexpected idea 2IN A NUTSHELL may ‘fit’ into a style of thinking that you already had – but you’re surprised because you hadn’t realized that this particular idea was part of it. Maybe you’re even intrigued to find that an idea of this general type fits into the familiar style. And the third sort of surprise is more interesting still: this is the aston- ishment you feel on encountering an apparently impossible idea. It just couldn’t have entered anyone’s head, you feel – and yet it did. It may even engender other ideas which, yesterday, you’d have thought equally impossible. What on earth can be going on? The three forms of creativity ‘What is going on’ isn’t magic – and it’s different in each type of case. For creativity can happen in three main ways, which correspond to the three sorts of surprise. The first involves making unfamiliar combinations of familiar ideas. Examples include poetic imagery, collage in painting or textile art, and analogies. These new combinations can be generated either deliberately or, often, unconsciously. Think of a physicist comparing an atom to the solar system, for instance, or a journalist comparing a politician with a decidedly non-cuddly animal. Or call to mind some examples of creative associations in poetry or visual art. In all these cases, making – and also appreciating – the novel combin- ation requires a rich store of knowledge in the person’s mind, and many different ways of moving around within it. The journalist or newspaper-reader needs a host of concepts about both politics and animal behaviour, and some ‘personal’ knowledge about the individual politician in question. Cartoonists who depict Ken Livingstone, the first publicly elected Mayor of London, as a newt are tapping into many different conceptual streams, including gossip about what he keeps in an aquarium in his home. The surprise you feel on looking at the cartoon is largely caused by seeing a human figure with a newt’s crest and tail: a combination of ideas that’s even less probable than the outsider winning the Derby. If the novel combination is to be valued by us, it has to have some point. It may or (more usually) may not have been caused by some random process – like shaking marbles in a bag. But the ideas/marbles have to have some intelligible conceptual pathway between them for the combination to ‘make sense’. The newt-human makes sense for many reasons, one of which is Ken’s famed predilection for newts. (What are some of the others?) And (to return to the example from Macbeth) sleep is a healer, as knitting can be. Even if two ideas are put together randomly 3IN A NUTSHELL in the first place, which I suspect happens only rarely, they are retained/ valued only if some such links can be found. The other two types of creativity are interestingly different from the first. They involve the exploration, and in the most surprising cases the transformation, of conceptual spaces in people’s minds. Exploring conceptual spaces Conceptual spaces are structured styles of thought. They are normally picked up from one’s own culture or peer group, but are occasionally borrowed from other cultures. In either case, they are already there: they aren’t originated by one individual mind. They include ways of writing prose or poetry; styles of sculpture, painting or music; theories in chem- istry or biology; fashions in couture or choreography, nouvelle cuisine and good old meat and two veg – in short, any disciplined way of thinking that is familiar to (and valued by) a certain social group. Within a given conceptual space many thoughts are possible, only some of which may actually have been thought. Some spaces, of course, have a richer potential than others. Noughts and crosses is such a restricted style of game-playing that every possible move has already been made countless times. But that’s not true of chess, where the num- ber of possible moves, though finite, is astronomically large. And if some sub-areas of chemistry have been exhausted (every possible molecule of that type having been identified), the space of possible limericks, or sonnets, has not – and never will be. Whatever the size of the space, someone who comes up with a new idea within that thinking style is being creative in the second, explora- tory, sense. If the new idea is surprising not just in itself but as an example of an unexpected general type, so much the better. And if it leads on to others (still within the same space) whose possibility was previously unsuspected, better still. Exploratory creativity is valuable because it can enable someone to see possibilities they hadn’t glimpsed before. They may even start to ask just what limits, and just what potential, this style of thinking has. We can compare this with driving into the country, with an Ordnance Survey map that you consult occasionally. You can keep to the motor- ways, and only look at the thick red lines on your map. But suppose, for some reason (a police diversion, or a call of nature), you drive o ff onto a smaller road. When you set out, you didn’t even know it existed. But of course, if you unfold the map you’ll see it marked there. And perhaps you ask yourself ‘I wonder what’s round that corner?’ and drive round it to find out. Maybe you come to a pretty village, or a council estate; or 4IN A NUTSHELL perhaps you end up in a cul-de-sac, or back on the motorway you came off in the first place. All these things were always possible (and they’re all represented on the map). But you’d never noticed them before – and you wouldn’t have done so now, if you hadn’t got into an exploratory frame of mind. In exploratory creativity, the ‘countryside’ is a style of thinking. Instead of exploring a structured geographical space, you explore a structured conceptual space, mapped by a particular style of painting, perhaps, or a specific area of theoretical chemistry. All professional artists and scientists do this sort of thing. Even the most mundane street artists in Leicester Square produce new portraits, or new caricatures, every day. They are exploring their space, though not necessarily in an adventurous way. Occasionally, they may realize that their sketching style enables them to do something (convey the set of the head, or the hint of a smile) better than they’d been doing before. They add a new trick to their repertoire, but in a real sense it’s something that ‘fits’ their established style: the potential was always there. Transforming the space What the street artists may also do is realize the limitations of their style. Then, they have an opportunity which the Sunday driver does not. Give or take a few years, and ignoring earthquake and flood, the country roads are fixed. Certainly, you can’t change them. Your Ordnance Survey map is reliable not only because it’s right but because it stays right. (Have you bothered to buy a new book of road maps within the last few years?) But the maps inside our heads, and favoured by our communities, can change – and it’s creative thinking which changes them. Some changes are relatively small and also relatively superficial. (Ask yourself: what’s the difference?) The limits of the mental map, or of some particular aspect of it, are slightly pushed, slightly altered, gently tweaked. Compare the situation in geographical space: suppose every- one in that pretty village suddenly added a roof extension to their cottage. It may ruin the prettiness of the village, but it won’t change the dimensions of the map. At most, the little ‘portrait’ of the village (assum- ing that it’s that sort of map) will have to be redrawn. The street artist, then – or Picasso, in a similar position – has an opportunity. In principle, he (or, as always, she) could do the psycho- logical equivalent of adding roof extensions or building a new road (a new technique, leading to new possibilities), or even re-routing the motorway. Re-routing the motorway (in ‘real life’ as in the mind) is the most 5IN A NUTSHELL difficult of all. The surprises that would engender could be so great as to make the driver lose his bearings. He may wonder if he’s been magically transported to a different county, or even a different country. Maybe he remembers a frustrating episode on his last trip, when he wanted to do something but his passenger scornfully said: ‘In England, motorways are like this: they simply don’t allow you to do that. You want to do it? Tough It’s impossible.’ A given style of thinking, no less than a road system, can render certain thoughts impossible – which is to say, unthinkable. The differ- ence, as remarked above, is that thinking styles can be changed – some- times, in the twinkling of an eye. Someone skilfully writing a limerick won’t find iambic pentameters dropping from their pen. But if you want to write a new sort of limerick, or a non-limerick somehow grounded in that familiar style, then maybe blank verse could play a role. The deepest cases of creativity involve someone’s thinking something which, with respect to the conceptual spaces in their minds, they couldn’t have thought before. The supposedly impossible idea can come about only if the creator changes the pre- existing style in some way. It must be tweaked, or even radically transformed, so that thoughts are now possible which previously (within the untransformed space) were literally inconceivable. But how can that possibly happen? Machine maps of the mind To understand how exploratory or transformational creativity can hap- pen we must know what conceptual spaces are and what sorts of mental processes could explore and modify them. Styles of thinking are studied by literary critics, musicologists and his- torians of art, fashion and science. And they are appreciated by us all. But intuitive appreciation, and even lifelong scholarship, may not make their structure clear. (An architectural historian, for instance, said of Frank Lloyd Wright’s Prairie Houses that their ‘principle of unity’ is ‘occult’.) This is the first point where computers are relevant. Conceptual spaces, and ways of exploring and transforming them, can be described by concepts drawn from artificial intelligence (AI). AI-concepts enable us to do psychology in a new way, by allowing us to construct (and test) hypotheses about the structures and processes that may be involved in thought. For instance, the structure of tonal harmony, or the ‘grammar’ of Prairie Houses, can be clearly expressed, and specific ways of exploring the space can be tried out. Methods for navigating, and changing, highly structured spaces can be compared. 6IN A NUTSHELL Of course, there is always the additional question of whether the suggested structures and processes are actually implemented in human heads. And that question isn’t always easy to answer. But the point, here, is that a computational approach gives us a way of coming up with scientific hypotheses about the rich subtleties of the human mind. Computer creativity? What of the second link between machines and creativity? Can com- puters be creative? Or, rather, can they at least appear to be creative? Many people would argue that no computer could possibly be genu- inely creative, no matter what its performance was like. Even if it far surpassed the humdrum scientist or street artist, it would not be counted as creative. It might produce theories as ground-breaking as Einstein’s, or music as highly valued as McCartney’s ‘Yesterday’ or even Beethoven’s Ninth – but still, for these people, it wouldn’t really be creative. Several different arguments are commonly used in support of that conclusion. For instance, it’s the programmer’s creativity that’s at work here, not the machine’s. The machine isn’t conscious, and has no desires, preferences or values, so it can’t appreciate or judge what it’s doing. A work of art is an expression of human experience and/or a com- munication between human beings, so machines simply don’t count. Perhaps you accept at least one of those reasons for denying creativity to computers? Very well, I won’t argue with you here (but see Chapter 11). Let us assume for the purpose of this discussion that computers cannot really be creative. The important point is that this doesn’t mean that there’s nothing more of interest to say. All the objections just listed accept, for the sake of argument, that the imaginary computer’s performance is indeed very like that of human beings, whether humdrum or not. What I want to focus on here is whether it’s true that computers could, in fact, come up with ideas that at least appear to be creative. Computer combinations Well, think of combinational creativity first. In one sense, this is easy to model on a computer. For nothing is simpler than picking out two ideas (two data structures) and putting them alongside each other. This can even be done with some subtlety, using the (connectionist) methods described in Chapter 6. In short: a computer could merrily produce novel combinations till kingdom come. 7IN A NUTSHELL But would they be of any interest? We saw above that combining ideas creatively is not like shaking marbles in a bag. The marbles have to come together because there is some intelligible, though previously unnoticed, link between them which we value because it is interesting – illuminating, thought-provoking, humorous – in some way. (Think sleep and knitting again.) We saw also that combinational creativity typically requires a very rich store of knowledge, of many different kinds, and the ability to form links of many different types. (Here, think politicians and newts again.) And we don’t only form links; we evaluate them. For instance, we can recognize that a joke is ‘in bad taste’. In other words: yes, the links that the joker is suggesting are actually there (so it is a real joke). But there are other links there also, which connect the ideas with sorrow, humiliation or tragedy. The joker should have noticed them, and should have refrained from reminding us of them. For a computer to make a subtle combinational joke, never mind to assess its tastefulness, would require, first, a database with a richness comparable to ours, and, second, methods of link-making (and link- evaluating) comparable in subtlety with ours. In principle, this is not impossible. After all, the human mind/brain doesn’t do it by magic. But don’t hold your breath The best example of computer-based combinational creativity so far is a program called JAPE, which makes punning jokes of a general type familiar to every eight-year-old (see Chapter 12). But making a one-o ff jest is usually more demanding. Ask yourself, for instance, what Jane Austen had to know in order to write the opening sentence of Pride and Prejudice: ‘It is a truth universally acknowledged, that a single man in possession of a good fortune must be in want of a wife.’ (And why, exactly, is it funny?) Artificial explorers and self-transforming machines What about exploratory creativity? Several programs already exist which can explore a given space in acceptable ways. One example is AARON, a drawing-program described in Chapter 7. AARON can generate thousands of line drawings in a certain style, pleasing enough to be spontaneously remarked upon by unsuspecting visitors – and to be exhibited in galleries worldwide, including the Tate. (The most recent version of AARON is able to paint its drawings too: see Chapter 12.) Another is David Cope’s Emmy, discussed in Chapter 12. This 8IN A NUTSHELL composes music in many different styles reminiscent of specific human composers such as Bach, Vivaldi, Mozart... and Stravinsky. Still others include architectural programs that design Palladian villas or Prairie Houses (also mentioned in Chapter 12), and other programs capable of analysing experimental data and finding new ways of expressing scien- tific laws (Chapter 8). A few AI-programs can even transform their conceptual space, by altering their own rules, so that interesting ideas result. Some of these ideas were already known to human beings, though not specifically prefigured within the program. (See the discussion of the automatic mathematician, AM, in Chapter 8.) But others are first-time fresh. ‘Evolutionary’ programs, for instance, can make random changes in their current rules so that new forms of structure result. At each gener- ation, the ‘best’ structures are selected and used to breed the next generation. Two examples that evolve coloured images (some of which, like AARON’s, are exhibited in galleries worldwide) are described in Chap- ter 12. In each case, the selection of the ‘fittest’ at each generation is done by a human being who picks out the most aesthetically pleasing patterns. In short, these are interactive graphics-environments, in which human and computer can cooperate in generating otherwise unimagin- able images. These computer-generated images often cause the third, deepest, form of surprise – almost as if a coin being tossed repeatedly were suddenly to show a wholly unexpected design. In such cases, one can’t see the relation between the daughter-image and its parent. The one appears to be a radical transformation of the other, or even some- thing entirely different. Anyone who has watched TV regularly over the past few years, or who has visited museums of contemporary art, will already know that many novel graphic images have been produced by self-transforming AI-programs of this kind. The problem is not to make the transform- ations: that is relatively easy. What’s difficult is to state our aesthetic values clearly enough to enable the program itself to make the evalu- ation at each generation. At present, the ‘natural selection’ is done by a human being (for example, the gallery visitor). In better-regulated domains, however, the value criteria can often be stated clearly enough to allow the evolutionary program to apply them automatically. An early example, a program for locating leaks in oil pipelines, is mentioned in Chapter 8. Now, scientists are starting to use these techniques to enhance their own creativity. Biochemical laborator- ies in universities and pharmaceutical companies are using evolutionary programs to help design new molecules for use in basic research and/or 9IN A NUTSHELL medicine. Even the ‘brains’ and ‘bodies’ of robots can now be evolved instead of being designed (see Chapter 12). Values and creativity One huge problem here has no special relevance to computers, but bedevils discussion of human creativity too. I said earlier that ‘new’ has two meanings, and that ‘surprising’ has three. I didn’t say how many meanings ‘valuable’ has – and nobody could. Our aesthetic values are difficult to recognize, more difficult to put into words, and even more difficult to state really clearly. (For a computer model, of course, they have to be stated really, really clearly.) Moreover, they change: who will proudly admit, today, to having worn a beehive hairdo or flared trousers in the 1960s? They vary across cul- tures. And even within a given ‘culture’, they are often disputed: di fferent subcultures or peer groups value different types of dress, jewellery or music. And where transformational creativity is concerned, the shock of the new may be so great that even fellow artists find it difficult to see value in the novel idea. Even in science, values are often elusive and sometimes changeable. Just what ‘simplicity’ or ‘elegance’ means, as applied to scientific theories, is something that philosophers of science have long tried – and failed – to pin down precisely. And whether a scientific finding or hypothesis is ‘interesting’ depends on the other theories current at the time, and on social questions too (might it have some medical value, for instance?). Because creativity by definition involves not only novelty but value, and because values are highly variable, it follows that many arguments about creativity are rooted in disagreements about value. This applies to human activities no less than to computer performance. So even if we could identify and program our aesthetic values so as to enable the computer to inform and monitor its own activities accordingly there would still be disagreement about whether the computer even appeared to be creative. The answer to our opening question, then, is that there are many intriguing relations between creativity and computers. Computers can come up with new ideas, and help people to do so. Both their failures and their successes help us think more clearly about our own creative powers. 101 THE MYSTERY OF CREATIVITY Shakespeare, Bach, Picasso; Newton, Darwin, Babbage; Chanel, the Saatchis, Groucho Marx, the Beatles . . . take your pick. From poets and scientists to advertisers and fashion designers, creativity abounds. Think of friends or relatives: very likely, you can recall creativeness there, too. Perhaps no jokes up to Groucho’s standards, but surely some spontaneous wit or sarcasm? Maybe they can hum their own descants to hymn-tunes, or improvize jazz on the living-room piano? And what about their ingenuity in running-up a fancy-dress costume, or fixing a faulty car? Certainly, there can be disagreement about whether some idea, or person, is creative. You may draw the line at your boss’s jokes, or your flatmate’s cooking. You may baulk at the brothers Marx or Saatchi. You may murmur that Darwin’s own grandfather, among others, had the idea of evolution long before he did. You may even grumble that Shakespeare borrowed plots from Plutarch, that Bach used themes from Vivaldi, or that Picasso adapted pictures by Velasquez. But you would be hard put to deny that creativity does, sometimes, happen. How it happens is a puzzle. This need not imply any fundamental difficulty about explaining creativity in scientific terms: scientists take puzzles in their stride. Mysteries, however, are different. If a puzzle is an unanswered ques- tion, a mystery is a question that can barely be intelligibly asked, never mind satisfactorily answered. Mysteries are beyond the reach of science. Creativity itself is seemingly a mystery, for there is something para- doxical about it, something which makes it difficult to see how it is even possible. How it happens is indeed puzzling, but that it happens at all is deeply mysterious. If we take seriously the dictionary-definition of creation, ‘to bring into being or form out of nothing’, creativity seems to be not only unintelli- gible but strictly impossible. No craftsman or engineer ever made an 11THE MYSTERY OF CREATIVITY artefact from nothing. And sorcerers (or their apprentices) who conjure brooms and buckets out of thin air do so not by any intelligible means, but by occult wizardry. The ‘explanation’ of creativity thus reduces either to denial or to magic. Nor does the problem concern only material creation. To define cre- ativity psychologically, as ‘the production of new ideas’, hardly helps. For how can novelty possibly be explained? Either what preceded it was similar, in which case there is no real novelty. Or it was not, in which case one cannot possibly understand how the novelty could arise from it. Again, we face either denial or magic. A psychological explanation of creativity, it seems, is in principle unachievable. It is not even clear that there can possibly be anything for it to explain. And yet, undeniably, there is.    noticed the paradoxical flavour P of the concept of creation long ago. Two thousand years before us, they argued that creation ex nihilo (out of nothing) is impossible even for God. They claimed that the universe was created not only by God but also, necessarily, out of God. This conclusion, however, does not solve the mystery. The universe apparently has (‘new’) properties which God does not have. So the medi- aeval theologians of Christianity, Judaism, and Islam – and their succes- sors in and after the Renaissance – painstakingly debated how it might be metaphysically possible for an immaterial God to create a material universe. Some philosophers, today as in the past, have concluded that it is not possible at all: either there is no creator-God (and no creation), or the creator of nature somehow shares nature’s properties. But if the creator shares the creation’s properties, can we really speak of creation? With no essential distinction between creator and created, there is nothing new, so there can be no creation. This is why Christian doctrine insists that Christ, being identical with God, was ‘begotten, not created’ (a phrase that occurs in a popular Christmas carol). In short, the paradox persists.    the universe, problematic as it is, can be left to the T attentions of theologians and cosmologists. What of human creativeness, whether occasional (the boss’s one witty 12THE MYSTERY OF CREATIVITY remark) or sustained (Mozart’s life-long repertoire)? Nothing could be more familiar. Psychology, surely, ought to be able to explain this? But human creativity is problematic, too. For instance, it is not just surprising: it appears to be intrinsically unpredictable. If – as many people believe – science conveys the ability to predict, a scienti fic psych- ology of creativity is a contradiction in terms. Someone who claims that creativity can be scientifically understood must therefore show in just what sense it is unpredictable, and why this unpredictability does not anchor it firmly in the depths of mystery. Many related problems concern just how novel a novelty has to be, to count as creative. There is novelty (and unpredictability) in randomness: so is chaos as such creative? There is novelty in madness too; what is the distinction between creativity and madness? Individuals can think things which are novel with respect to their own previous thoughts. So is every banality newly-recognized by an adult – and a great deal of what a young child does – to count as creative? People can have ideas which, so far as is known, no person has ever had before. So if I remark (what no one else has ever been daft enough to say) that there are thirty-three blind purple-spotted giant hedgehogs living in the Tower of London, does that make me creative? Suppose a chemist or mathematician has an idea that wins a coveted international award, and it later turns out that a self-educated crossing- sweeper had it first. Is this even possible, and if so does it destroy the prize-winner’s creativity? What about the recognition of novelty: if an idea is novel, why cannot everyone realize its novelty, and why is this realization sometimes long- delayed? And what of social acceptance: is this relevant to creativity, and if so does it follow that psychology alone (helped by neither the sociology of knowledge nor the history of ideas) cannot explain it? These queries have a philosophical air, for they concern not merely the ‘facts’ about creativity but the very concept itself. There are many intriguing factual questions about creativity – above all, just how it happens. But many recalcitrant problems arise, at least in part, because of conceptual difficulties in saying what creativity is, what counts as creative. And the factual questions cannot be answered while the con- ceptual paradox is raging. One aim of this book is to arrive at a de finition of creativity which tames the paradox. Once we have tamed the paradox and eliminated the mystery, creativity can sensibly be regarded as a mental capacity to be understood in psychological terms, as other mental capacities are. This leads to my second aim: to outline the sorts of thought-processes 13THE MYSTERY OF CREATIVITY and mental structures in which our creativity is grounded, so suggesting a solution to the puzzle of how creativity happens.    human creativity are implicitly influenced P by the paradoxical nature of the concept, and are highly pessimistic about science’s ability to explain it. Indeed, ‘pessimistic’ is perhaps the wrong word here. For many people revel in the supposed inaccessibility of creativity to science. Two wide- spread views – I call them the inspirational and the romantic – assume that creativity, being humanity’s crowning glory, is not to be sullied by the reductionist tentacles of scientific explanation. In its unintelligibility is its splendour. These views are believed by many to be literally true. But they are rarely critically examined. They are not theories, so much as myths: imaginative constructions, whose function is to express the values, assuage the fears, and endorse the practices of the community that celebrates them. The inspirational approach sees creativity as essentially mysterious, even superhuman or divine. Plato put it like this: ‘A poet is holy, and never able to compose until he has become inspired, and is beside him- self and reason is no longer in him . . . for not by art does he utter these, but by power divine.’ Over twenty centuries later, the play Amadeus drew a similar contrast between Mozart and his contemporary, Salieri. Mozart was shown as coarse, vulgar, lazy, and undisciplined in almost every aspect of his life, but apparently informed by a divine spark when composing. Salieri was the socially well-behaved and conscientious expert, well-equipped with ‘reason’ and ‘art’ (that is, skill), who – for all his success as the leading court-composer (until Mozart came along) – achieved a merely human competence in his music. The London critic Bernard Levin, in his col- umn in The Times, explicitly drew the conclusion that Mozart (like other great artists) was, literally, divinely inspired. If this view is correct, all hope of explaining creativity scientifically must be dismissed as absurd. The romantic view is less extreme, claiming that creativity – while not actually divine – is at least exceptional. Creative artists (and scientists) are said to be people gifted with a specific talent which others lack: insight, or intuition. As for how intuitive insight actually functions, romantics o ffer only the vaguest suggestions. They see creativity as fundamentally unanalysable, and are deeply unsympathetic to the notion that a scientific account of it might one day be achieved. 14THE MYSTERY OF CREATIVITY According to the romantic, intuitive talent is innate, a gift that can be squandered but cannot be acquired – or taught. This romanticism has a defeatist air, for it implies that the most we can do to encourage creativity is to identify the people with this special talent, and give them room to work. Any more active fostering of creativity is inconceivable. But hymns to insight, or to intuition, are not enough. From the psycho- logical point of view, ‘insight’ is the name not of an answer but of a question – and a very unclearly expressed question, at that. Romanticism provides no understanding of creativity. This was rec- ognized by Arthur Koestler, who was genuinely interested in how creativ- ity happens, and whose account of creativity in terms of ‘the bisociation of matrices’ (the juxtaposition of formerly unrelated ideas) is also a popular view. As he put it, The moment of truth, the sudden emergence of a new insight, is an act of intuition. Such intuitions give the appearance of miraculous flashes, or short-circuits of reasoning. In fact they may be likened to an immersed chain, of which only the begin- ning and the end are visible above the surface of consciousness. The diver vanishes at one end of the chain and comes up at the 1 other end, guided by invisible links. However, Koestler’s own account of how this happens – although an advance over the pseudo-mysticism propounded by romantics and inspirationists – is no more than suggestive. He described creativity in general terms, but did not explain it in any detail.    up the question of creativity from where Koestler T left it. It tries to identify some of the ‘invisible links’ underlying intuition, and to specify how they can be tempered and forged. My main concern, then, is with the human mind, and how our intuition works. How is it possible for people to think new thoughts? The central theme of the book is that these matters can be better understood with the help of ideas from artificial intelligence (AI). Artificial intelligence is the study of how to build and/or program computers to do the sorts of things which human minds can do: using English, recognizing faces, identifying objects half-hidden in shadows, advising on problems in science, law, or medical diagnosis. It provides many ideas about possible psychological processes, and so has given rise to a new approach in studying the mind: ‘computational’ psychology. 15THE MYSTERY OF CREATIVITY My account of human creativity will call on many computational ideas. These can be grasped by people who know next to nothing about computers, and who care about computers even less. They can be thought of as a particular class of psychological ideas. As we shall see, they help us to understand not only how creativity can happen, but also what creativity is.    one which both inspirationists and romantics spurn T with horror, and deride with scorn. If the source of creativity is superhuman or divine, or if it springs inexplicably from some special human genius, computers must be utterly irrelevant. Nor is it only ‘anti-scientific’ inspirationists and romantics who draw this conclusion. Even people (such as Koestler, for example) who allow that psychology might one day be able to explain creativity, usually reject the suggestion that computers or computation could have anything to do with it. The very idea, it is often said, is intrinsically absurd: computers cannot create, because they can do only what they are programmed to do. The first person to publish this argument was Lady Ada Lovelace, the close friend of Charles Babbage – whose mid-nineteenth-century ‘Analytical Engine’ was, in essence, a design for a digital computer. Although convinced that Babbage’s Analytical Engine was in principle able to ‘compose elaborate and scientific pieces of music of any degree of complexity or extent’, Countess Lovelace declared: ‘The Analytical Engine has no pretensions whatever to originate anything. It can do only 2 whatever we know how to order it to perform’. Any elaborate pieces of music emanating from the Analytical Engine would therefore be credited not to the engine, but to the engineer. If Lady Ada’s remark means merely that a computer can do only what its program enables it to do, it is correct, and important. But if it is intended as an argument denying any interesting link between computers and creativity, it is too quick and too simple. We must distinguish four different questions, which are often confused with each other. I call them Lovelace-questions, because many people would respond to them (with a dismissive ‘No’) by using the argument cited above. The first Lovelace-question is whether computational ideas can help us understand how human creativity is possible. The second is whether computers (now or in the future) could ever do things which at least appear to be creative. The third is whether a computer could ever appear 16THE MYSTERY OF CREATIVITY to recognize creativity – in poems written by human poets, for instance. And the fourth is whether computers themselves could ever really be creative (as opposed to merely producing apparently creative perform- ance whose originality is wholly due to the human programmer). This book is mainly about the first Lovelace-question, which focusses on creativity in people. The next two Lovelace-questions are less import- ant, except insofar as they throw light on the first. The fourth (discussed only in the final chapter) is, for the purposes of this book, the least important of them all.    the first Lovelace-question is ‘Yes’. Computational M ideas can help us to understand how human creativity is possible. As we shall see, this does not mean that creativity is predictable, nor even that an original idea can be explained in every detail after it has appeared. But we can draw on computational ideas in understanding in scientific terms how ‘intuition’ works. The answer to the second Lovelace-question is also ‘Yes’, and later I shall describe some existing computer programs which, arguably, appear to be creative. For reasons I shall discuss, programs which unarguably appear creative do not yet exist. (Even if they did exist, it wouldn’t follow that they were really creative: that’s the focus of the fourth Lovelace-question. Often, I’ll describe pro- grams that appear to be creative as simply creative – without using scare- quotes, and without adding the words ‘appear to be.’ To do otherwise would be insufferably tedious. But please remember that questions about computers being ‘really’ creative won’t arise, and won’t be relevant, until the fourth Lovelace-question is discussed, in the final chapter.) Sometimes, these ‘creations’ would be worthy of admiration if pro- duced in the usual way – whatever that is – by a human being. One example I shall mention concerns an elegantly simple proof in geometry, which Euclid himself did not find. Nor is this appearance of computer- creativity confined to purely mathematical, or even scientific, contexts. The picture reproduced in the Frontispiece sits in my office, and has been spontaneously admired by many visitors and colleagues; yet it was generated by a computer program. The literary efforts of current programs are less impressive, as we shall see. But even these are not quite so unthinkingly ‘mechanical’ as (the first four stanzas of) this imaginary computer-poem, fictionally ascribed by Laurence Lerner to ARTHUR – Automatic Record Tabulator but 3 Heuristically Unreliable Reasoner: 17THE MYSTERY OF CREATIVITY Arthur’s Anthology of English Poetry To be or not to be, that is the question To justify the ways of God to men There was a time when meadow grove and stream The dropping of the daylight in the west Otters below and moorhens on the top Had fallen in Lyonesse about their Lord. There was a time when moorhens on the top To justify the daylight in the west, To be or not to be about their Lord Had fallen in Lyonesse from God to men; Otters below and meadow grove and stream The dropping of the day, that is the question. A time when Lyonesse and grove and stream To be the daylight in the west on top When meadow otters fallen about their Lord To justify the moorhens is the question Or not to be the dropping God to men There was below the ways that is a time. To be in Lyonesse, that is the question To justify the otters, is the question The dropping of the meadows, is the question I do not know the answer to the question There was a time when moorhens in the west There was a time when daylight on the top There was a time when God was not a question There was a time when poets Then I came The third Lovelace-question arises because to appreciate originality one needs some of the abilities required for creativity itself. (In Amadeus, Salieri curses God bitterly for giving him enough musical talent to recognize Mozart’s genius in full, but not enough to emulate it.) Indeed, being creative – as opposed to merely intriguingly crazy – requires a capacity for critical evaluation, as we shall see. Accordingly, people generally give the same answer to the third question as they do to the second. The sceptic’s resounding ‘No’ is expressed in another of Lerner’s poems depicting ‘The Life and Opinions of a Digital Computer’: 18

Advise: Why You Wasting Money in Costly SEO Tools, Use World's Best Free SEO Tool Ubersuggest.