Abaqus impact tutorial pdf

Commercial Finite Element Program ABAQUS Tutorials and also abaqus topology optimization tutorial
GregDeamons Profile Pic
GregDeamons,New Zealand,Professional
Published Date:03-08-2017
Your Website URL(Optional)
Comment
11 Commercial Finite Element Program ABAQUS Tutorials by ABAQUS, Inc. 11.1 INTRODUCTION In this series of tutorials you will become familiar with the process of creating ABAQUS models interactivelyusingABAQUS/CAE.Threeproblemswillbeconsidered:(1)steady-stateheatconduction inatrapezoidalplate,(2)bendingofashortcantileverbeamand(3)theelasticityproblemofaplatewitha holesubjectedtouniformfar-fieldtension. 11.1.1 Steady-State Heat Flow Example YouwillcreateamodeloftheplateasshowninFigure11.1.Thesystemofunitsisnotspecifiedbutallunits areassumedtobeconsistent.Theplateisofunitthicknessandsubjectedtotheconditionsshowninthe figure.Youwillperformaseriesofsimulationswithincreasinglevelsofmeshrefinementusingbothlinear triangularandlinearquadrilateralelements. 11.2 PRELIMINARIES 1. StartanewsessionofABAQUS/CAEbyenteringabaquscaeattheprompt. Note that abaqusshouldbereplaced withthecommandonyoursystem usedtorun ABAQUS. For example,toruntheABAQUSv6.6StudentEdition,thecommandisabq662se. 2. SelectCreateModelDatabasefromtheStartSessiondialogbox. TheModelTreeislocatedtotheleftofthetoolboxareaoftheABAQUS/CAEwindow.IftheModel Treeisnotvisible,makesurethatthereisacheckmarknexttoShowModelTreeintheViewmenu.If theModelTreeisstillnotvisible,dragthe cursorfromtheleftsideoftheABAQUS/CAEwindowto expandtheModelTree. TheModelTreeprovidesavisualdescriptionofthehierarchyofitemsinthemodeldatabasealong withaccesstomostofthefunctionalityavailableinABAQUS/CAE.Ifyouclickthemousebutton3 (MB3) on an item in the tree, a menu appears listing the commands associated with the item. For example,Figure11.2showsthemenufortheModelscontainer.IntheModelsmenu,theCreatemenu A First Course in Finite Elements J. Fish and T. Belytschko 2007 John Wiley & Sons, Ltd ISBNs: 0 470 85275 5 (cased) 0 470 85276 3 (Pbk)276 COMMERCIALFINITEELEMENTPROGRAMABAQUSTUTORIALS Figure 11.1 Trapezoidalplate. itemappearsinboldbecauseitisthedefaultactionthatwillbeperformedwhenyoudouble-clickthe Modelscontainer. 3. Before proceeding, rename the current model. In the Model Tree, click MB3 on the model named Model-1andselectRenamefromthemenuthatappears.EnterheatintheRenameModeldialog boxandclickOK. 4. Tosavethemodeldatabase,selectFileSaveAsfromthemainmenubarandenterthenameabq- tutorialsintheFileNamelineoftheSaveModelDatabaseAsdialogbox.ClickOK. The.caeextensionisaddedautomatically. 11.3 CREATING A PART The first step in modeling this problem involves sketching the geometry for a two-dimensional, planar, deformablesolidbody. 1. IntheModelTree,double-clickPartstocreateanewpart. TheCreatePartdialogboxappears. Figure 11.2 Modelsmenu.CREATING APART 277 Figure 11.3 Promptarea. 2. Namethepartplate.IntheCreatePartdialogbox,select2DPlanarasthepart’smodelingspace, Deformableasthetype,andShellasthebasefeature.IntheApproximatesizetextfield,type15. 3. ClickContinuetoexittheCreatePartdialogbox. ABAQUS/CAEdisplaystextinthepromptareanearthebottomofthewindowtoguideyouthroughthe procedure, as shown in Figure11.3. Click the cancel buttonto cancel the current task; click thebackup buttontocancelthecurrentstepinthetaskandreturntothepreviousstep. TheSketchertoolboxappearsintheleftsideofthemainwindow,andtheSketchergridappearsinthe viewport. Youwillfirstsketchanapproximationoftheplateandthenuseconstraintsanddimensionstorefinethe sketch.Toselecttheappropriatedrawingtool,dothefollowing: a. ClicktheCreateLines:Rectangletoolintheupper-rightregionoftheSketchertoolbox,asshownin Figure11.4. TherectangledrawingtoolappearsintheSketchertoolboxwithawhitebackground,indicatingthat you selected it. ABAQUS/CAE displays prompts in the prompt area to guide you through the procedure. Noticethatasyoumovethecursoraroundtheviewport,ABAQUS/CAEdisplaysthecursor’sX–and Y–coordinatesintheupper–leftcorner. b. Selectanytwopointsastheoppositecornersoftherectangle. c. Usethedimensiontool todimensionthetopandleftedgesoftherectangle.Thetopedgeshould haveahorizontaldimensionof2m,andtheleftedgeshouldhaveaverticaldimensionof1m.When dimensioningeachedge,simplyselecttheline,clickmousebutton1topositionthedimensiontextand thenenterthenewdimensioninthepromptarea. d. Use the Delete tool to delete the perpendicular constraints associated with the bottom edge of the rectangle (select Constraints as the Scope in the prompt area to facilitate your selections). e. Dimension the right edge of the plate so that it has a vertical dimension of 0.5m. The final sketch appearsasshowninFigure11.5. f. Clickmousebutton2anywhereintheviewporttofinishusingthedimensiontool.(Mousebutton2is themiddlemousebuttononathree-buttonmouse;onatwo-buttonmouse,pressbothmousebuttons simultaneously.) g. ClickDoneinthepromptareatoexitthesketcher. Figure 11.4 Connectedlinessketchtool.278 COMMERCIALFINITEELEMENTPROGRAMABAQUSTUTORIALS Figure 11.5 Trapezoiddrawnwithsketcher. 2 1 3 Figure 11.6 Finishedpart. ABAQUS/CAEdisplaysthenewpart,asshowninFigure11.6. 11.4 CREATING A MATERIAL DEFINITION Youwillnowcreateasinglelinearmaterialwithaconductivityof5units. Todefineamaterial: 1. IntheModelTree,double-clickMaterialstocreateanewmaterial. 2. IntheEditMaterialdialogbox,namethematerialexample.Noticethevariousoptionsavailablein thisdialogbox. 3. Fromthematerialeditor’smenubar,selectThermalConductivity,asshowninFigure11.7. Figure 11.7 Pull–downmenuofthematerialeditor.DEFININGANDASSIGNINGSECTION PROPERTIES 279 Figure 11.8 Conductivitydataform. ABAQUS/CAEdisplaystheConductivitydataform. 4. Enteravalueof 5.0 fortheconductivity,asshowninFigure11.8.Usethemousetoselectacellfor dataentry. 5. ClickOKtoexitthematerialeditor. 11.5 DEFINING AND ASSIGNING SECTION PROPERTIES Materialpropertiesareassociatedwithpartregionsthroughtheuseofsectionproperties.Youwilldefinea solidsectionpropertythatreferstothematerialcreatedaboveandassignthissectionpropertytothepart. Todefineahomogeneoussolidsection: 1. IntheModelTree,double-clickSectionstocreateanewsection. 2. IntheCreateSectiondialogbox: a. NamethesectionplateSection. b. In the Category list, accept Solid as the default category selection. c. In the Type list, accept Homogeneous as the default type selection. d. Click Continue. Thesolidsectioneditorappears. 3. IntheEditSectiondialogbox: a. AcceptthedefaultselectionofexamplefortheMaterialassociatedwiththesection. b. Accept the default value of 1 for Plane stress/strain thickness. c. Click OK. Toassignthesectiondefinitiontotheplate: 1. IntheModelTree, expandthebranchforthepart namedplate(click the‘þ’symboltoexpandthe Partscontainerandthenclickthe‘þ’symbolnexttothepartnamedplate). 2. Double-clickSectionAssignmentstoassignasectiontotheplate. ABAQUS/CAEdisplayspromptsinthepromptareatoguideyouthroughtheprocedure. 3. Clickanywhereontheplatetoselecttheentirepart. ABAQUS/CAEhighlightstheplate. 4. Clickmousebutton2intheviewportorclickDoneinthepromptareatoaccepttheselectedgeometry. TheEditSectionAssignmentdialogboxappearscontainingalistofexistingsectiondefinitions. 5. AcceptthedefaultselectionofplateSection,andclickOK. ABAQUS/CAEassignsthesolidsectiondefinitiontotheplateandclosestheEditSectionAssignment dialogbox.280 COMMERCIALFINITEELEMENTPROGRAMABAQUSTUTORIALS 11.6 ASSEMBLING THE MODEL Every ABAQUS model is based on the concept of an assembly of part instances. You will create an assemblycontainingasingleinstanceofthepartcreatedearlier. Toassemblethemodel: 1. IntheModelTree,expandthebranchfortheAssemblycontaineranddouble-clickInstancestocreate anewpartinstance. 2. IntheCreateInstancedialogbox,selectplateandclickOK. 11.7 CONFIGURING THE ANALYSIS Tosimulatethethermalresponseoftheplate,asingleheattransferstepwillbeused. Tocreateaheattransferanalysisstep: 1. IntheModelTree,double-clickStepstocreateastep. 2. FromthelistofavailablegeneralproceduresintheCreateStepdialogbox,selectHeattransferand clickContinue. TheEditStepdialogboxappears. 3. In the Description field of the Basic tabbed page, enter Two-dimensional steady-state heattransfer. 4. ChangetheresponsetypetoSteady-state. 5. Acceptallotherdefaultvaluesprovidedforthestep. 6. ClickOKtocreatethestepandtoexitthestepeditor. 11.8 APPLYINGABOUNDARYCONDITIONANDALOAD TO THE MODEL TheloadsandboundaryconditionsappliedtothemodelaredepictedinFigure11.1.ThetemperatureT¼0 isprescribedalongtheedgesABandAD.Theheatfluxesq¼ 0andq¼ 20areprescribedontheedgesBC andCD,respectively.AconstantheatsourceQ¼6isappliedovertheentireplate. When assigning these attributes, you have the choice of selecting regions directly in theviewport or assigningthemtopredefinedsetsandsurfaces.Inthisexample,weadoptthelatterapproach.Thus,youwill firstdefinesetsandsurfaces. Todefinesetsandsurfaces: 1. IntheModelTree,double-clickSets(underneaththeAssembly)tocreateanewset.IntheCreateSet dialogbox,namethesetleftandclickContinue.Selecttheleftverticaledgeoftheplateandclick Doneinthepromptarea. 2. Similarly,createthefollowingsets: - bottom at the bottom (skewed) edge of the plate; - plate for the entire plate. 3. IntheModelTree,double-clickSurfaces(underneaththeAssembly)tocreateanewsurface.Inthe CreateSurfacedialogbox,namethesurfacetopandclickContinue.Selectthetophorizontaledge oftheplateandclickDoneinthepromptarea.APPLYINGA BOUNDARY CONDITIONANDA LOADTO THE MODEL 281 2 3 1 Figure 11.9 Leftedgeselected. Toapplyboundaryconditionstotheplate: 1. IntheModelTree,double-clickBCstocreateanewboundarycondition. 2. IntheCreateBoundaryConditiondialogbox: - Name the boundary condition left temp. - Select Step-1 as the step in which the boundary condition will be activated. - In the Category list, select Other. - In the Types for Selected Step list, select Temperature and click Continue. 3. Inthepromptarea,clickSetstoopentheRegionSelectiondialogbox.Selectthesetleftandtoggleon Highlightselectionsinviewport.ThehighlightededgeappearsasshowninFigure11.9. 4. Whenyouaresatisfiedthatthecorrectsethasbeenselected,clickContinue. TheEditBoundaryConditiondialogboxappears. 5. IntheEditBoundaryConditiondialogbox,enteramagnitudeof0. 6. AcceptthedefaultAmplitudeselection(Ramp)andthedefaultDistribution(Uniform). 7. ClickOKtocreatetheboundaryconditionandtoexittheeditor. ABAQUS/CAEdisplaysyellowsquaresalongtheedgetoindicateatemperatureboundarycondition hasbeenprescribed. 8. Repeat the above steps to assign the boundary condition to the bottom edge. Name this boundary conditionbottomtemp. Toapplyasurfacefluxtothetopedgeoftheplate: 1. IntheModelTree,double-clickLoadstocreateanewload. 2. IntheCreateLoaddialogbox: - Name the load surface flux. - Select Step-1 as the step in which the load will be applied. - In the Category list, select Thermal. - In the Types for Selected Step list, select Surface heat flux. - Click Continue. 3. IntheRegionSelectiondialog box,selectthesurfacenamedtop.Thesurfaceappears asshownin Figure11.10. 4. Whenyouaresatisfiedthatthecorrectsurfacehasbeenselected,clickContinue. TheEditLoaddialogboxappears.282 COMMERCIALFINITEELEMENTPROGRAMABAQUSTUTORIALS 2 3 1 Figure 11.10 Topsurfaceselected. 5. IntheEditLoaddialogbox: - Enter a magnitude of 20 for the load. - Accept the default Amplitude selection (Ramp) and the default Distribution (Uniform). - Click OK to create the load definition and to exit the editor. ABAQUS/CAEdisplaysgreendownward-pointingarrowsalongthetopfaceoftheplatetoindicatean inwardflux. Toapplyabodyfluxtotheplate: 1. IntheModelTree,double-clickLoadstocreateanewload. 2. IntheCreateLoaddialogbox - Name the load body flux. - Select Step-1 as the step in which the load will be applied. - In the Category list, select Thermal. - In the Types for Selected Step list, select Body heat flux. - Click Continue. 3. IntheRegionSelectiondialogbox,selectthesetnamedplateandclickContinue. 4. IntheEditLoaddialogbox: - Enter a magnitude of 6 for the load. - Accept the default Amplitude selection (Ramp) and the default Distribution (Uniform). - Click OK to create the load definition and to exit the editor. ABAQUS/CAEdisplaysyellowsquaresalongtheremainingedgesoftheplate. Therightedgeoftheplateisfullyinsulated.Thisisthedefaultboundaryconditionforathermalanalysis model.Thus,youneednotapplyaboundaryconditionorloadtothisedge. 11.9 MESHING THE MODEL YouusetheMeshmoduletogeneratethefiniteelementmesh.Youcanchoosethemeshingtechniquethat ABAQUS/CAEwillusetocreatethemesh,theelementshapeandtheelementtype.ABAQUS/CAEoffers a number of different meshing techniques. The default meshing technique assigned to the model is indicated by the color of the model when you enter the Mesh module; if ABAQUS/CAE displays the modelinorange,itcannotbemeshedwithoutassistancefromtheuser.MESHINGTHE MODEL 283 Toassignthemeshcontrols: 1. IntheModelTree,double-clickMeshinthebranchforthepartnamedplate. 2. FromthemainmenubaroftheMeshmodule,selectMesh Controls. 3. IntheMeshControlsdialogbox,chooseTriastheElementShapeselection. 4. AcceptFreeasthedefaultTechniqueselection. 5. ClickOKtoassignthemeshcontrolsandtoclosethedialogbox. Toassignanabaquselementtype: 1. Fromthemainmenubar,selectMesh ElementType. 2. IntheElementTypedialogbox,choosethefollowing: - Standard as the Element Library selection. - Linear as the Geometric Order. - Heat Transfer as the Family of elements. 3. Inthelowerportionofthedialogbox,examinetheelementshapeoptions.Abriefdescriptionofthe defaultelementselectionisavailableatthebottomofeachtabbedpage. 4. ClickOKtoassignDC2D3elementstothepartandtoclosethedialogbox. Tomeshthepart: 1. Fromthemainmenubar,selectSeed Parttoseedthepart. TheGlobalSeedsdialogboxdisplaysthedefaultelementsizethatABAQUS/CAEwillusetoseedthe part.Thisdefaultelementsizeisbasedonthesizeofthepart. 2. Enteranapproximateglobalsizeof2.0andclickOK.Thiselementsizeischosensothatonlyone elementwillbecreatedalongeachedgeoftheplate. 3. ABAQUS/CAE applies the seeds to the part, as shown in Figure 11.11. The squares in the figure indicatefixednodelocations. 4. Fromthemainmenubar,selectMesh Parttomeshthepart. 5. ClickYesinthepromptareaorclickmousebutton2intheviewporttoconfirmthatyouwanttomesh thepart. 6. ABAQUS/CAEmeshesthepartanddisplaystheresultingmesh,asshowninFigure11.12a. 7. Ifyouwishtochangethediagonaloftheelements,selectMeshEdit.IntheEditMeshdialogbox, selectElementasthecategoryandSwapdiagonalasthemethod.ClickOK.Intheviewport,selectthe shareddiagonaledgeoftheelements.ClickYesinthepromptareatocompletetheoperation.Themesh appearsasshowninFigure11.12b. 2 1 3 Figure 11.11 Seededpartinstance.284 COMMERCIALFINITEELEMENTPROGRAMABAQUSTUTORIALS 2 2 1 1 3 3 (a) (b) Figure 11.12 Swappeddiagonals. 11.10 CREATING AND SUBMITTING AN ANALYSIS JOB Youwillnowcreateajobandsubmititforanalysis. Tocreateandsubmitananalysisjob: 1. IntheModelTree,double-clickJobstocreateanewanalysisjob. 2. Namethejobtri-coarse. 3. Fromthelistofavailablemodelsselectheat. 4. ClickContinuetocreatethejob. 5. IntheDescriptionfieldoftheEditJobdialogbox,enterCoarsetrianglemesh. 6. Clickthetabstoseethecontentsofeachfolderofthejobeditorandtoreviewthedefaultsettings.Click OKtoacceptthedefaultjobsettings. 7. IntheModelTree,expandtheJobscontainerandclickMB3onthejobnamedtri-coarse.Inthemenu thatappears,selectSubmittosubmityourjobforanalysis.Theiconforthejobwillchangetoindicate thestatusofthejobinparenthesisafterthejobname.Asthejobruns,thestatusRunningwillbeshown intheModelTree. 8. Whenthejobcompletessuccessfully,thestatusfieldwillchangetoCompleted.Youarenowreadyto viewtheresultsoftheanalysisintheVisualizationmodule. 11.11 VIEWING THE ANALYSIS RESULTS 1. IntheModelTree,clickMB3onthejobtri-coarseandselectResultsfromthemenuthatappears. ABAQUS/CAEopenstheoutputdatabasecreatedbythejob(tri-coarse.odb)anddisplaysthe undeformedmodelshape. Youwillcreateacontourplotofthetemperaturedistribution. 2. Fromthemainmenubar,selectResult FieldOutputandselectNT11astheoutputvariabletobe displayed. 3. IntheSelectPlotStatedialogbox,selectAsisandclickOK. 4. Inthetoolbox,clickthePlotContourstool toviewacontourplotofthetemperaturedistribution, asshowninFigure11.13. 11.12 SOLVING THE PROBLEM USING QUADRILATERALS Youwillnowsolvetheproblemusingquadrilateralelements.Thisinvolveschangingtheelementshape andcreatingandsubmittinganewjob.Thestepsareoutlinedbelow.REFININGTHEMESH 285 NT11 +1.937e+00 +1.775e+00 +1.614e+00 +1.453e+00 +1.291e+00 +1.130e+00 +9.684e-01 +8.070e-01 +6.456e-01 +4.842e-01 +3.228e-01 +1.614e-01 +0.000e+00 Step: Step-1, Two-dimensional steady state heat transfer 2 Increment 1: Step Time = 1.000 Primary Var: NT11 Deformed Var: not set Deformation Scale Factor: not set 1 3 Figure 11.13 Temperaturecontourplot:coarsetrianglemesh. Tomodifyamodel: 1. IntheModelTree,double-clickMeshinthebranchforthepartnamedplatetoswitchtotheMesh module. 2. FromthemainmenubaroftheMeshmodule,selectMeshControls.SelectQuadastheelement shapeandclickOK. 3. Awarning is issued indicating that the current mesh will be deleted. Click Delete Meshes in the ABAQUSdialogboxtoproceed. 4. Fromthemainmenubar,selectMesh ParttomeshthepartwithDC2D4elements. 5. ClickYesinthepromptareaorclickmousebutton2intheviewporttoconfirmthatyouwanttomesh thepart. 6. Createanewjob.Namethisjobquad-coarseandgiveitthefollowingdescription:Coarsequad mesh. 7. Submitthejobforanalysisandmonitoritsprogress.Whenthejobcompletes,openthefilequad- coarse.odbintheVisualizationmodule. 8. Plotthetemperaturecontoursforthismodel.TheresultisshowninFigure11.14. 11.13 REFINING THE MESH Clearlythemeshusedtosolvethisproblemwastoocoarse.Foreachchoiceofelementshape(trianglesand quadrilaterals),changethemeshseedsizetorefinethemesh.Usethefollowingmeshseedsizes:  0.20(thisproducesafinermeshthanusedpreviously)  0.05(thisproducesthefinestmeshusedinthisstudy) Thus,youwillcreateandrunfouradditionaljobsnamed:  tri-finer  tri-finest  quad-finer  quad-finest286 COMMERCIALFINITEELEMENTPROGRAMABAQUSTUTORIALS NT11 +3.689e+00 +3.382e+00 +3.074e+00 +2.767e+00 +2.460e+00 +2.152e+00 +1.845e+00 +1.537e+00 +1.230e+00 +9.223e-01 +6.149e-01 +3.074e-01 +0.000e+00 Step: Step-1, Two-dimensional steady state heat transfer 2 Increment 1: Step Time = 1.000 Primary Var: NT11 Deformed Var: not set Deformation Scale Factor: not set 1 3 Figure 11.14 Temperaturecontourplot:coarsequadmesh. Foreachcase,editthemodeltoredefinethemesh,createanewjob,andsubmititforanalysis.Repeatthis processuntilalljobslistedabovehavebeensubmitted. TheresultsoftherefinedmeshmodelsareshowninFigure11.15. Fromthemainmenubar,selectFile Savetosaveyourmodeldatabasefile. NT11 NT11 +2.775e+00 +2.789e+00 +2.543e+00 +2.556e+00 +2.312e+00 +2.324e+00 +2.081e+00 +2.091e+00 +1.850e+00 +1.859e+00 +1.619e+00 +1.627e+00 +1.387e+00 +1.394e+00 +1.156e+00 +1.162e+00 +9.249e-01 +9.295e-01 +6.937e-01 +6.971e-01 +4.624e-01 +4.648e-01 +2.312e-01 +2.324e-01 +0.000e+00 +0.000e+00 Step: Step-1, Two-dimensional steady state heat transfer Step: Step-1, Two-dimensional steady state heat transfer 2 2 Increment 1: Step Time = 1.000 Increment 1: Step Time = 1.000 Primary Var: NT11 Primary Var: NT11 Deformed Var: not set Deformation Scale Factor: not set Deformed Var: not set Deformation Scale Factor: not set 1 1 3 3 tri-finest quad-finest NT11 NT11 +2.787e+00 +2.788e+00 +2.555e+00 +2.555e+00 +2.322e+00 +2.323e+00 +2.090e+00 +2.091e+00 +1.858e+00 +1.858e+00 +1.626e+00 +1.626e+00 +1.393e+00 +1.394e+00 +1.161e+00 +1.161e+00 +9.289e-01 +9.292e-01 +6.967e-01 +6.969e-01 +4.645e-01 +4.646e-01 +2.322e-01 +2.323e-01 +0.000e+00 +0.000e+00 Step: Step-1, Two-dimensional steady state heat transfer Step: Step-1, Two-dimensional steady state heat transfer 2 2 Increment 1: Step Time = 1.000 Increment 1: Step Time = 1.000 Primary Var: NT11 Primary Var: NT11 Deformed Var: not set Deformation Scale Factor: not set Deformed Var: not set Deformation Scale Factor: not set 1 1 3 3 Figure 11.15 Temperaturecontourplots:refinedmeshes.CONFIGURING THEANALYSIS 287 Figure 11.16 Cantileverbeam. 11.13.1 Bending of a Short Cantilever Beam Inthistutorial,youwillmodifythemodelcreatedinthepreviousexercisetosimulatethebendingofashort cantilever beam. The cross-section of the beam has a trapezoidal shape, as shown in Figure 11.16. The systemofunitsisnotspecifiedbutallunitsareassumedtobeconsistent.Thebeamisofunitthicknessand subjected to the conditions shown in the figure. The material response is linear elastic with Young’s modulusE¼30E6andPoisson’sratio ¼ 0:3. 11.14 COPYING THE MODEL Inthemodeldatabasefilesavedearlier,copytheexistingmodeltoanewmodel:intheModelTree,click MB3onthemodelnamedheatandselectCopyModelfromthemenuthatappears.Entercantileverin theCopyModeldialogboxandclickOK. Allinstructionsthatfollowrefertothecantilevermodel. 11.15 MODIFYING THE MATERIAL DEFINITION Youwillnoweditthematerialdefinitiontodefinelinearelasticproperties.Youdonotneedtodeletethe thermalpropertiesdefinedearlier.Thesewillbeignoredduringthestaticstressanalysisthatfollows. Toeditamaterial 1. IntheModelTree,expandtheMaterialscontaineranddouble-clickexampletoeditthematerial. 2. From the material editor’s menu bar, select Mechanical Elasticity Elastic, as shown in Figure11.17. ABAQUS/CAEdisplaystheElasticdataform. 3. Enteravalueof30e6forYoung’smodulusand0.3forPoisson’sratio,asshowninFigure11.18.Use Tabormovethecursortoanewcellandclicktomovebetweencells. 4. ClickOKtoexitthematerialeditor. 11.16 CONFIGURING THE ANALYSIS Tosimulatethestructuralresponseofthebeam,replacetheheattransferstepdefinedearlierwithasingle general static step. The thermal loads and boundary conditions defined earlier will be automatically suppressedwhentheheattransferstepisreplaced.288 COMMERCIALFINITEELEMENTPROGRAMABAQUSTUTORIALS Figure 11.17 Pull–downmenuinmaterialeditor. Toreplaceastep 1. In the Model Tree, expand the Steps container. Click MB3 on the step named Step-1 and select Replacefromthemenuthatappears. 2. FromthelistofavailablegeneralproceduresintheReplaceStepdialogbox,selectStatic,General andclickContinue. 3. IntheDescriptionfieldoftheBasictabbedpage,enterBeambending. 4. Acceptalldefaultvaluesprovidedforthestep. 5. ClickOKtocreatethestepandtoexitthestepeditor. 6. ExpandtheBCsandLoadscontainerstoconfirmthattheiritemshavebeensuppressed(denotedbythe symbol). 11.17 APPLYING A BOUNDARY CONDITION AND A LOAD TO THE MODEL TheloadsandboundaryconditionsappliedtothemodelaredepictedinFigure11.16whereedgeDAis  fixed.EdgesABandBCaretractionfree;onedgeCD,thetractionist ¼20. y Toapplyboundaryconditionstothebeam 1. IntheModelTree,double-clickBCstocreateanewboundarycondition. 2. IntheCreateBoundaryConditiondialogbox: Figure 11.18 Elasticdataform.MESHINGTHE MODEL 289 - Name the boundary condition fix. - Select Step-1 as the step in which the boundary condition will be activated. - In the Category list, select Mechanical. - In the Types for Selected Step list, Symmetry/Antisymmetry/Encastre and click Continue. 3. Inthepromptarea,clickSetstoopentheRegionSelectiondialogbox.Selectthesetleftandclick Continue. TheEditBoundaryConditiondialogboxappears. 4. IntheEditBoundaryConditiondialogbox,selectENCASTRE. 5. ClickOKtocreatetheboundaryconditionandtoexittheeditor. ABAQUS/CAEdisplaysglyphsalongtheedgetoindicateboundaryconditionshavebeenapplied. Toapplyasurfacetractiontothetopedgeofthebeam: 1. IntheModelTree,double-clickLoadstocreateanewload. 2. IntheCreateLoaddialogbox: - Name the load traction. - Select Step-1 as the step in which the load will be applied. - In the Category list, select Mechanical. - In the Types for Selected Step list, select Surface traction. - Click Continue. 3. IntheRegionSelectiondialogbox,selectthesurfacenamedtopandclickContinue. TheEditLoaddialogboxappears. 4. IntheEditLoaddialogbox: - Select General as the traction type. - Click Edit to define the traction direction. Select the top-left corner of the part as the first point and the bottom-left corner of the part as the second point of the direction vector. This vector points in the negative 2-direction. - Enter a magnitude of 20 for the load. - Accept all other default selections and click OK. ABAQUS/CAEdisplayspurpledownward-pointingarrowsalongthetopfaceofthebeamtoindicatea negativenormaltraction. Theremainingedgesofthebeamaretractionfree.Thisisdefaultboundaryconditionforastressanalysis model.Thus,youneednotapplyaboundaryconditionorloadtotheseedges. 11.18 MESHING THE MODEL Younowneedtochangetheelementtypetouseplanestrain(CPE4R)elements.Planestrainelementsare usedsincethebeamisthickrelativetoitscross-sectionaldimensions.Usethefinestmeshdensityfromthe earliermodel(globalseed¼0.05)withaquadrilateralelementshape. Tochangetheabaquselementtype: 1. IntheModelTree,double-clickMeshinthebranchforthepartnamedplate. 2. Fromthemainmenubar,selectMeshElementType.290 COMMERCIALFINITEELEMENTPROGRAMABAQUSTUTORIALS 3. IntheElementTypedialogbox,choosethefollowing: - Standard as the Element Library selection. - Linear as the Geometric Order. - Plane Strain as the Family of elements. 4. Inthelowerportionofthedialogbox,examinetheelementshapeoptions.Abriefdescriptionofthe defaultelementselectionisavailableatthebottomofeachtabbedpage. 5. ClickOKtoassignCPE4Relementstothepartandtoclosethedialogbox. 11.19 CREATING AND SUBMITTING AN ANALYSIS JOB Youwillnowcreateajobandsubmititforanalysis. Tocreateandsubmitananalysisjob: 1. IntheModelTree,double-clickJobstocreateanewanalysisjob. 2. Namethejobbeam. 3. Fromthelistofavailablemodelsselectcantilever. 4. ClickContinuetocreatethejob. 5. In the Description field of theEditJob dialog box, enterBendingofashortcantilever beam. 6. ClickOKtoacceptthedefaultjobsettings. 7. IntheModelTree,expandtheJobscontainerandclickMB3onthejobnamedbeam.Inthemenuthat appears,selectSubmittosubmityourjobforanalysis. 11.20 VIEWING THE ANALYSIS RESULTS 1. When the job completes successfully, switch to the Visualization module: In the Model Tree, click MB3onthejobnamedbeamandselectResultsfromthemenuthatappears. ABAQUS/CAE opens the output database created by the job (beam.odb) and displays the unde- formedmodelshape. YouwillcreateacontourplotoftheMisesstressdistribution.TheMisesstressisthedefaultfieldoutput variableselection;thus,youdonotneedtoselectitpriortocreatingthecontourplot. 2. Inthetoolbox,clickthePlotContourstool toviewacontourplotoftheMisesstressdistribution, asshowninFigure11.19. 3. Plotthedeformedmodelshape(click inthetoolbox). 4. Inthetoolbox,clicktheAllowMultiplePlotStatestool followedbythePlotUndeformedShape tool .Thiswilloverlaythedeformedandundeformedmodelshapes,asshowninFigure11.20. For small-displacement analyses, the displacements are scaled automatically to ensure that they are clearlyvisible.The scalefactorisdisplayedinthestateblock. Inthiscasethedisplacementshavebeen scaledbyafactorof7586. Note:InFigure11.20,onlyfeatureedgesoftheundeformedshapearevisible(setviatheSuperimpose Optionstool ). Fromthemainmenubar,selectFileSavetosaveyourmodeldatabasefile. 11.20.1 Plate with a Hole in Tension You will now create a model of the platewith a hole shown in Figure 11.21. The system of units is not specifiedbutallunitsareassumedtobeconsistent.TheplateisofunitthicknessandsubjectedtotensioninVIEWINGTHE ANALYSIS RESULTS 291 S, Mises (Ave. Crit.: 75%) +2.664e+02 +2.443e+02 +2.221e+02 +1.999e+02 +1.777e+02 +1.556e+02 +1.334e+02 +1.112e+02 +8.901e+01 +6.683e+01 +4.465e+01 +2.248e+01 +2.967e-01 Step: Step-1 2 Increment 1: Step Time = 1.000 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +7.586e+03 1 3 Figure 11.19 Misesstresscontourplot. Step: Step-1 2 Increment 1: Step Time = 1.000 Deformed Var: U Deformation Scale Factor: +7.586e+03 1 3 Figure 11.20 Overlayofdeformedandundeformedmodelshapes. thehorizontaldirection.Becauseofthesymmetryinthemodelandloading,youneedonlyonequarterof the model plate. You will perform a series of simulations with increasing levels of mesh refinement and compare thevalue of the stress in the horizontal direction at thetop of the holewith the theoretical value. Figure 11.21 Plateundertension(left);quarter-symmetrymodel(right).292 COMMERCIALFINITEELEMENTPROGRAMABAQUSTUTORIALS Figure 11.22 Rectanglesketchtool. 11.21 CREATING A NEW MODEL Inthemodeldatabasefilesavedearlier,createanewmodel:intheModelTree,double-clickModels.Enter plateasthemodelnameintheEditModelAttributesdialogboxandclickOK. Allinstructionsthatfollowrefertotheplatemodel. 11.22 CREATING A PART Asbefore,thefirststepinvolvessketchingthegeometryforatwo-dimensional,planar,deformablesolid body. 1. IntheModelTree,double-clickPartstocreateanewpart. TheCreatePartdialogboxappears 2. Namethepartplate.IntheCreatePartdialogbox,select2DPlanarasthepart’smodelingspace, DeformableasthetypeandShellasthebasefeature.IntheApproximatesizetextfield,type200. 3. ClickContinuetoexittheCreatePartdialogbox.Tosketchtheplate,youneedtodrawarectangle.To selecttherectangledrawingtool,dothefollowing: - Click the Create Lines: Rectangle tool in the upper–right region of the Sketcher toolbox as shown in Figure 11.22. The rectangle drawing tool appears in the Sketcher toolbox with a white background, indicating that you selected it. ABAQUS/CAE displays prompts in the prompt area to guide you through the procedure. - Click one corner of the rectangle at coordinates (20,20). - Move the cursor to the opposite corner (20, 20). - Createacirclecenteredattheoriginwithaperimeterpointlocatedat(2.5,0.0).Thefinalsketch appears as shown in Figure 11.23. - Click Done in the prompt area to exit the sketcher. - Quarter the plate to remove all but the upper right quadrant. To do this: FromthemainmenubarofthePartmodule,selectShapeCutExtrude. UsingtheCreateLines:Connectedtoollocatedintheupperright-handcorneroftheSketcher toolbox,sketchtheseriesofconnectedlinesshowninFigure11.24.ClickDonetocompletethe operation. ABAQUS/CAEdisplaysthenewpart,asshowninFigure11.21(right).CREATING AMATERIALDEFINITION 293 Figure 11.23 Rectanglewithaholedrawnwithsketcher. 11.23 CREATING A MATERIAL DEFINITION Youwillnowcreateasinglelinearelasticmaterial. Todefineamaterial: 1. IntheModelTree,double-clickMaterialstocreateanewmaterial. 2. IntheEditMaterialdialogbox,namethematerialsteel. Figure 11.24 Sketchofcuttingtool.294 COMMERCIALFINITEELEMENTPROGRAMABAQUSTUTORIALS Figure 11.25 Elasticdataform. 3. Fromthematerialeditor’smenubar,selectMechanicalElasticityElastic,asshownearlierin Figure11.17. ABAQUS/CAEdisplaystheElasticdataform. 4. Enteravalueof2e11forYoung’smodulusand0.3forPoisson’sratio,asshowninFigure11.25. 5. ClickOKtoexitthematerialeditor. 11.24 DEFINING AND ASSIGNING SECTION PROPERTIES Youwilldefineasolidsectionpropertythatreferencesthematerialcreatedaboveandassignthissection propertytothepart. Todefineahomogeneoussolidsection: 1. IntheModelTree,double-clickSectionstocreateanewsection. 2. IntheCreateSectiondialogbox: - Name the section plateSection. - In the Category list, accept Solid as the default category selection. - In the Type list, accept Homogeneous as the default type selection. - Click Continue. Thesolidsectioneditorappears. 3. IntheEditSectiondialogbox: - Accept the default selection of steel for the Material associated with the section. - Accept the default value of 1 for Plane stress/strain thickness. - Click OK. Toassignthesectiondefinitiontotheplate: 1. IntheModelTree,expandthebranchforthepartnamedplate. 2. Double-clickSectionAssignmentstoassignasectiontotheplate. 3. Clickanywhereontheplatetoselecttheentirepart. ABAQUS/CAEhighlightstheplate. 4. Clickmousebutton2intheviewportorclickDoneinthepromptareatoaccepttheselectedgeometry. TheEditSectionAssignmentdialogboxappearscontainingalistofexistingsectiondefinitions. 5. AcceptthedefaultselectionofplateSectionasthesectiondefinition,andclickOK. ABAQUS/CAEassignsthesolidsectiondefinitiontotheplateandclosestheEditSectionAssignment dialogbox.

Advise: Why You Wasting Money in Costly SEO Tools, Use World's Best Free SEO Tool Ubersuggest.