fundamentals of premixed turbulent combustion

diagrams of premixed turbulent combustion based on direct simulation and turbulent premixed combustion modelling using fractal geometry
Dr.TomHunt Profile Pic
Dr.TomHunt,United States,Teacher
Published Date:23-07-2017
Your Website URL(Optional)
Comment
Turbulent Premixed Combustion CEFRC Combustion Summer School 2014 Prof. Dr.-Ing. Heinz Pitsch Copyright ©2014 by Heinz Pitsch. This material is not to be sold, reproduced or distributed without prior written permission of the owner, Heinz Pitsch. Example: LES of a stationary gas turbine velocity field flame 2 Course Overview Part II: Turbulent Combustion • Turbulence • Turbulent Premixed Combustion • Scales of Turbulent Premixed • Turbulent Non-Premixed Combustion Combustion • Regime-Diagram • Modelling Turbulent Combustion • Turbulent Burning Velocity • Applications 3 Scales of Turbulent Premixed Combustion • Integral turbulent scales Energy Transfer of Energy • Smallest turbulent scales/Kolmogorov scales Dissipation of Energy • Flame thickness and time, reaction zone thickness 4 Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer preheat zone Inner layer • Turbulent Damköhler number • Karlovitz number (interaction of small-scale turbulence with the flame) 5 Course Overview Part II: Turbulent Combustion • Turbulence • Turbulent Premixed Combustion • Scales of Turbulent Premixed • Turbulent Non-Premixed Combustion Combustion • Regime-Diagram • Modelling Turbulent Combustion • Turbulent Burning Velocity • Applications 6 Regime Diagram Corrugated Flamelet Regime 7 Regime Diagram: Corrugated Flamelets • Ka 1  η l F  Interaction of a very thin flame with a turbulent flow  Assumption: infinitely thin flame (compared to turbulent scales) premixed flame in isotropic turbulence OH-radical-distribution in a turbulent premixed flame Buschmann (1996) 8 Regime Diagramm: Broken Reaction Zones Regime 9 Regime Diagramm: Broken Reaction Zones Regime • Ka 1  η l δ δ Burning Temp  Smallest turbulent eddies rate enter the reaction zones  Turbulent transport  radicals are removed from reaction zone  Local extinguishing in the inner reaction zone • Overall extinguishing of the Ka = 0,1 flame front is possible Two-dimensional slices from three-dimensional simulations of low- and high-Karlovitz-supernovae flames, respectively. The left-hand panel in each case is burning rate, and the right-hand panel is Ka = 230 temperature. Source: A. J. Aspden et al. (JFM 2011) 10 Regime Diagramm: Thin Reaction Zones Regime 11 Regime Diagramm: Thin Reaction Zones Regime • Ka 1 und Ka 1  l η l δ δ F  With l ≈ 0,1l  Ka ≈ 100Ka δ F δ  Turbulent mixing inside preheat zone  Assumption: infinitely thin reaction zone (compared to turbulent scales) thin reaction zone thickened preheat zone temperature distribution from DNS of a premixed turbulent flame 12 Regime Diagram: Résumé Source: A. J. Aspden et al. (JFM 2011) 13 Regime Diagram: Résumé Source: A. J. Aspden et al. (JFM 2011) 14 Course Overview Part II: Turbulent Combustion • Turbulence • Turbulent Premixed Combustion • Scales of Turbulent Premixed • Turbulent Non-Premixed Combustion Combustion • Regime-Diagram • Modelling Turbulent Combustion • Turbulent Burning Velocity • Applications 15 Turbulent Burning Velocity Comparison: Laminar/Measured Burning Velocity Isentropic compression ≈ 15 m/s 1 m/s 20 Exemplary measurements in gasoline engine with Laminar burning velocity tumble generator of flame velocity of iso-octane at spark plug position during full load (Source: Merker, „Grundlagen Verbrennungsmotoren“) 16 Comparison: Laminar/Measured Burning Velocity ≈factor 30 Experimental data of s vs. wrinkled T laminar-flame theories of turbulent flame propagation (data from Turns 2000) 17 Turbulent Burning Velocity • Main problem for turbulent premixed combustion: Quantification of turbulent burning velocity s T • s : Velocity which quantifies the propagation of the turbulent flame front into T unburnt mixture • Distinction of two limiting cases by Damköhler (1940) 1. Large scale turbulence ↔ corrugated flamelets 2. Small scale turbulence ↔ thin reaction zones 18 Turbulent Burning Velocity: Corrugated Flamelets • Instantaneous flame front  Flame surface area A T  Propagates locally with laminar burning velocity s into unburnt mixture L • Mean flame front  Mean flame surface area A  Propagates with turbulent burning „u“ „b“ „u“ „b“ velocity s T 19 Turbulent Burning Velocity: Corrugated Flamelets • With the mass flux trough A and A T • Assume constant density in the unburnt mixture (assumption) • Wrinkling of the laminar flame (A ↑)  increase of s T T 20