Medical Physics lectures ppt

medical physics powerpoint presentation and comprehensive biomedical physics pdf
Dr.LeonBurns Profile Pic
Dr.LeonBurns,New Zealand,Researcher
Published Date:21-07-2017
Your Website URL(Optional)
Comment
Biomedical  physics   Erika  Garu4   Florian  Grüner   1  The  course  structure   Friday    8:30  –  10:00      Lecture     Friday    10:15  –  11:45  Journal  club  /  exercise     Web  page:   hIp://www.desy.de/garu4/LECTURES/BioMedical/Lectures_WS2014-­‐15.htm     Journal  Club:   -­‐  Begin  24.10.14   -­‐  One  paper  /  week     -­‐  Everybody  read  /  understand  /  prepare  a  quesXon  /  discuss   -­‐  During  exercise  hours  one  person  introduces  the  paper  ON  THE  BOARD  /   all  discuss  (no  slides  required)       2/29  66-­‐278  Seminar  on  biomedical  physics   3LP   •  AddiXonal  &  not  mandatory  for  biomedical  physics   •  Does  not  require  to  follow  the  course  on  biomedical  physics   •  Start  on  31/10,    Wed.  12:00  –  13:30,  sem.  room  3     Part  1  6  invited  seminars  from  medical  doctors  and  medical  industry     •  RadiaXon  physics/biology       •  Image-­‐guided    therapy     •  Radio-­‐oncology     •  magneXc  parXcle  imaging   •  intervenXonal  imaging   •  ultrasound     Part  2  seminars  from  students  on  topics  related  to  the  invited  seminars   The  seminars  are  prepared  in  presentaXon  format  (slides  required)  of  about   15-­‐20  minutes  /  student.       3/29  Biomedical  physics     •  Fundamentals  of  RadiaXon  Physics       •  Medical  DiagnosXc  Techniques            medical  imaging   •  Imaging  technics  (basic)   •  RadiaXon  Therapy       Not  covered  in  the  course  (but  belonging  to  biomedical  physics):     •  Advanced  Imaging       •  RadiaXon  ProtecXon  and  Dosimetry       •  Radiobiology       •  Anatomy  and  Physiology     •  Molecular  and  cellular  oncology       Some  of  the  missing  topics  will  be  covered  in:   66-­‐278  Seminar  on  Biomedical  Physics   4/29  Medical  imaging     Structure  of  the  course   1)  IntroducXon   2)  DetecXon  of  photons  (physics  and  detectors)    principles  /  tools   3)  Therapy  with  proton  and  ion  beams     4)  X-­‐  ray  sources                sources   5)  Sources  for  nuclear  medicine     6)  Image  quality                  objec5ve   7)  X-­‐ray  imaging   8)  Computed  tomography   9)  Planar  scinXgraphy              imaging  modali5es   10)  Emission  tomography   11)  MagneXc  Resonance  Imaging     12)  MulXmodal  systems     The  course  will  not  cover  ultrasound  and  opXcal  imaging   5/29  Literature    Based  on  Prince  and  Links,  Medical  Imaging  Signals  and  Systems  and    Lecture  Notes  by  Prince.  Figures  are  from  the  book.    and  lectures  from  Yao  Wang  (NYU-­‐Poly)     AddiXonal  suggested  literature:     •  C.Grupen  and  I.Buvat:  Handbook  of  ParXcle  DetecXon  and  Imaging;   •  W.R.Leo:  Techniques  for  Nuclear  and  ParXcle  Physics  Experiments,   Springer;     6/29  What  is  the  added  value  of     physics  for  medicine?   ….or  why  should  YOU  study  biomedical  physics?   …or  why  should  senior  physicists  care  about  medical  research?   …and  why  care  medical  researchers/industry  about  physics???  First  answer….synergy   X-­‐ray  source   image   physics   reconstrucXon   accelerator  physics   detector  physics   medical  doctors  Second  answer….overcoming  limits   single  molecule  imaging   imaging  of  diagnosXc  agents  not   possible  in-­‐vivo   CERN-­‐sized  detector  reduced  to  paXent-­‐size   3D  protein  structure  Biomedical  Physics  =   joint  research   Physicists  don‘t  know  the  limits  of  current  medical  technologies   medical  doctors  don‘t  have  insight  into  possibiliXes  of  physics  What  can  HEP  do  for  medical  physics?   From  HEP  we  are  used  to:   •  Work  on  large  complex  systems     •  Challenging  integraXon  condiXons   •  Technology  fronXer  soluXon  for:  materials,   electronics,  data  acquisiXon,  data  volume,   processing/analysis  techniques,  simulaXon     11  A  calorimeter  for  HEP  /  PET   PET  calorimeter  system   (a  laying  human  fits  into  the  detector  bore)   CMS  calorimeter  system   (the  humans  are  not  part  of  the  experiment)  A  calorimeter  for  HEP   calorimeter   Huge  detector  volume:   •  segmented  in  single  ch.  O(10M)   •  Inside  4T  magneXc  coil     Single  channel:     •  PlasXc  scinXllator     •  Analog  silicon-­‐photomulXplier  (SiPM)     Readout  electronics:   Single  channel   •  MulX-­‐channel  r/o  chip     •  Energy  &  Xme  measurement       Number  of  sellable  apparatus:  1   SiPM   3  cm   erika.garu4desy.de   13  A  calorimeter  for  PET     Medium  detector  volume:   •  segmented  in  single  ch.  O(100-­‐1000)   •  For  PET/MRI  next  to  1T  coil  +  7T                gradient  field       1m   Single  channel:     •  Inorganic  scinXllator  (crystal)     •  Currently  photomulXplier  tubes  or                Avalanche  PhotoDiode       GE  Discovery  VCT   Single  channel   Readout  electronics:   •  MulX-­‐channel  r/o  chip     •  Energy  &  Xme  measurement       3 4 Number  of  sellable  apparatus:  10 -­‐10       APD   erika.garu4desy.de   14   Siemens  ConvenXonal  X-­‐ray  sources   convenXonal/industrial  X-­‐ray  tubes   •  broad  energy  spectrum   •  large  divergence  („  2  pi“)   •  not  tunable   •  large  spot  size,  lower  spaXal  resoluXon    Brilliant  X-­‐ray  sources…way  too  large  for  clinical   applicaXon   Synchrotron   XFEL  Laser-­‐driven  X-­‐ray  sources   Ø  advantages:   §   quasi-­‐monochroma5c  (few  %)  →  high  CNR/dose   high   §   laminar  beam  geometry  →  scaRer  reduc5on   brilliance   §    low  divergence  →  high  spa5al  resolu5on   §   tunable  energy  Diagnosis     Main  applicaXon  of  medical  imaging  techniques  in  disease  diagnosis,  e.g.:   •  cancer     •  cardiovascular  disease     •  neurological  disorders  (e.g.,  Alzheimer’s  disease)     and  in  drug  development  (small  animal  imaging  with  microPET  or   microSPECT,  microCT,  microMRI,  bioluminescence  and  fluorescence  imaging   systems)   Next  three  slides  are  from:  Nuclear  Medicine  Imaging  in  Diagnosis  and  Treatment   Advancing  Nuclear  Medicine  Through  InnovaXon.   NaXonal  Research  Council  (US)  and  InsXtute  of  Medicine  (US)  CommiIee  on  State  of  the  Science  of  Nuclear   Medicine.   Washington  (DC):  NaXonal  Academies  Press  (US);  2007.   18/29   Copyright  ©  2007,  NaXonal  Academy  of  Sciences.  Staging  of  lung  cancer  with  FDG  and  PET/CT.  The  whole-­‐body  image  (Panel  A)  shows  normal  FDG   uptake  in  the  brain  and  the  urinary  bladder.  In  addiXon,  several  regions  of  intensely  increased  FDG   uptake  are  seen  in  the  chest.  On  the  cross-­‐secXonal  images  of  chest  (Panels  B  through  E),  the   primary  tumor  (PT,  Panel  B)  is  seen  in  the  right  lung  (Ln)  (arrow)  with  several  malignant  lymph   nodes  on  the  same  side.  There  are  addiXonal  malignant  lymph  nodes  on  the  opposite  side  of  the   paXent’s  chest  (Panel  E,  arrows).     19/29   SOURCE:  Courtesy  of  Wolfgang  Weber,  University  of  California  at  Los  Angeles  (UCLA).  Monitoring  the  effects  of  chemotherapy  on  tumor  volume  and  glucose  uptake  with  serial   mulXslice  computed  tomography  (MSCT)  and  PET  imaging  in  a  paXent  with  cancer  of  the   esophagus.  The  large  tumor  seen  on  the  MSCT  image  (yellow  arrow)  is  associated  with  intense   FDG  uptake  on  the  pre-­‐treatment  PET  image  (red  arrow).  At  2  weeks,  the  tumor  volume   decreased  only  mildly  (decrease  in  diameter  from  21  mm  to  19  mm),  while  the  FDG  uptake   declined  by  about  50  percent  (reflected  by  the  decrease  in  the  standardized  uptake  value  of  FDG   from  16.8  to  8.5).  At  2  months,  the  tumor  volume  has  strikingly  decreased  and  the  FDG  uptake  is   only  faintly  visible.     20/29   SOURCE:  Reprinted  by  permission  of  the  Society  of  Nuclear  Medicine  from  Wieder  et  al.  2005.